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Abstract
La Relatività Ristretta Planckiana (RRP)1 si propone come esten-
sione simmetrica della Relatività Ristretta di Einstein, fondata
sull’invarianza della velocità della luce c. In questo nuovo quadro,
l’energia di Planck

Ep =

√
ℏc5

G

viene assunta come costante universale invariante e come limite
superiore invalicabile per l’energia concentrata in un singolo evento
fisico elementare o in un processo localizzato, e non per l’energia
totale macroscopica di un sistema esteso.

Viene introdotto un nuovo fattore di trasformazione,

γE(E) = 1√
1−

(
E
Ep

)2
,

speculare al fattore di Lorentz γv = 1√
1−(v/c)2

, che governa la
dipendenza del tempo proprio dal contenuto energetico. Per E → 0
si recupera il limite classico dτ ≈ dt, mentre per E → Ep si verifica
un’accelerazione del tempo proprio, con dτ/dt→∞.

La teoria conserva la struttura di gruppo di Lorentz mediante
l’introduzione dei boost energetici, caratterizzati dal parametro
βE = E/Ep, e definisce un invariante planckiano

s2
E = (cEt)2 − |x⃗|2,

che resta costante sotto le trasformazioni planckiane.
Le equazioni di campo di Einstein vengono modificate

sostituendo al tensore energia-impulso Tµν una forma efficace

T (eff)
µν = Tµν

γ2
E

,

1Questa versione del lavoro rappresenta la prima stesura integrale della ricerca,
non ancora sottoposta a revisione esterna. Il testo potrebbe contenere impre-
cisioni formali o errori di conversione in LATEX, e sarà oggetto di revisione,
integrazione e ampliamento nelle versioni successive, prima della sottomissione a
peer review.
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con conseguente attenuazione delle singolarità gravitazionali.
Tra le predizioni principali della RRP vi sono: scenari cosmologici

senza singolarità iniziale (Big Bounce), buchi neri regolari privi di
singolarità centrale, deviazioni cinematiche nei raggi cosmici ultra-
energetici e modifiche spettrali nelle onde gravitazionali emesse da
collassi estremi.

La Relatività Ristretta Planckiana si configura dunque come una
teoria falsificabile e testabile, capace di fornire un ponte concettuale
e matematico tra la Relatività di Einstein e le scale quantistiche di
Planck.
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1 Introduzione

1.1 Limiti della Relatività Ristretta e Generale di
Einstein

Le teorie relativistiche formulate da Albert Einstein nel XX secolo
— la Relatività Ristretta (1905) e la Relatività Generale (1915) —
hanno rivoluzionato la fisica moderna, fornendo un quadro coerente
per la descrizione dello spazio-tempo, della dinamica dei sistemi ad
alta velocità e della gravitazione come manifestazione geometrica.
Esse hanno superato i limiti della meccanica classica newtoniana,
rivelando la non assolutezza di spazio e tempo e l’influenza della
materia e dell’energia sulla curvatura dello spazio-tempo.

La Relatività Ristretta si fonda su due postulati fondamentali: (i)
le leggi della fisica sono identiche in tutti i sistemi inerziali, e (ii) la
velocità della luce nel vuoto è costante e indipendente dallo stato di
moto della sorgente e dell’osservatore. Da questi principi derivano la
contrazione delle lunghezze, la dilatazione temporale e l’equivalenza
massa-energia E = mc2. Tuttavia, la teoria rimane limitata alla
cinematica e dinamica in assenza di campi gravitazionali.

La Relatività Generale estende questi principi includendo la
gravitazione, attraverso le equazioni di campo

Gµν + Λgµν = 8πG
c4 Tµν ,

dove Gµν è il tensore di Einstein, gµν la metrica dello spazio-tempo,
Tµν il tensore energia-impulso e Λ la costante cosmologica. Que-
sta formulazione ha trovato conferme sperimentali straordinarie:
dalla precessione del perielio di Mercurio alla deflessione della lu-
ce in prossimità del Sole, fino alla rivelazione diretta delle onde
gravitazionali.

Nonostante il successo delle due teorie, emergono limiti
concettuali e sperimentali in contesti estremi:

1. Singolarità gravitazionali. La Relatività Generale predice
punti di densità e curvatura infinita, come al centro dei buchi
neri o all’origine del Big Bang. Tali divergenze indicano il
fallimento della teoria oltre le scale di validità attese.

9



1 Introduzione

2. Incompatibilità con la meccanica quantistica. Mentre
le interazioni fondamentali (elettromagnetica, nucleare debole
e forte) sono descritte da teorie quantistiche di campo, la
gravitazione rimane formulata in termini geometrici classici.
L’unificazione con la meccanica quantistica richiede un quadro
che includa naturalmente le scale di Planck.

3. Limiti sperimentali. Le predizioni di Einstein sono state
verificate fino a scale di energia molto inferiori a quella di
Planck,

Ep =

√
ℏc5

G
≈ 1.22× 1019 GeV,

che rappresenta il confine naturale in cui effetti quantistici del-
la gravità non possono più essere trascurati. Per confronto, le
energie raggiungibili al Large Hadron Collider sono dell’ordine
di E ∼ 104 GeV, quindi circa E/Ep ∼ 10−15.

4. Problema dell’inflazione e della cosmologia primordia-
le. Le soluzioni cosmologiche basate sulla Relatività Generale
richiedono meccanismi addizionali (campo inflatonico, energie
di vuoto) per spiegare l’orizzonte e la piattezza dell’universo.
Tuttavia, tali ipotesi non derivano direttamente dalla struttura
teorica della RG.

5. Stabilità ultra-relativistica. La cinematica di particelle con
energie ultra-energetiche (raggi cosmici fino a E ∼ 1020 eV)
solleva domande sulla validità del fattore di Lorentz standard

γv = 1√
1− (v/c)2 ,

quando si considerano processi prossimi alla scala di Planck.

Queste problematiche rendono evidente che la Relatività Ristret-
ta e Generale, pur essendo teorie di successo, non costituiscono
l’ultima parola sulla struttura dello spazio-tempo. È necessario
esplorare estensioni teoriche capaci di preservare i successi empirici
di Einstein ma, al contempo, di incorporare un limite superiore
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1.2 Ruolo delle scale di Planck come nuova frontiera

di energia, Ep, che svolga un ruolo simmetrico rispetto alla velo-
cità della luce c. La Relatività Ristretta Planckiana si inserisce
in questo contesto, proponendosi come un passo naturale verso
una descrizione coerente delle dinamiche fisiche ai confini estremi
dell’universo.

1.2 Ruolo delle scale di Planck come nuova frontiera
Le scale di Planck, introdotte per la prima volta da Max Planck
nel 1899, rappresentano le combinazioni fondamentali delle costanti
universali ℏ (costante di Planck ridotta), c (velocità della luce)
e G (costante gravitazionale). Esse definiscono unità naturali di
lunghezza, tempo, energia e massa, al di là delle quali l’attuale
formulazione della fisica cessa di essere valida.

Le definizioni canoniche sono:

lp =
√

ℏG
c3 ≈ 1.616× 10−35 m,

tp = lp
c

=
√

ℏG
c5 ≈ 5.391× 10−44 s,

mp =
√

ℏc
G
≈ 2.176× 10−8 kg,

Ep = mpc
2 =

√
ℏc5

G
≈ 1.956× 109 J ≈ 1.2209× 1019 GeV.

Queste scale fissano i limiti naturali entro i quali si prevede
che gli effetti quantistici della gravità diventino significativi. In
particolare:

1. Lunghezza di Planck lp Stabilisce il limite inferiore con-
cepibile per la risoluzione spaziale. Al di sotto di tale scala,
la nozione di distanza classica perde significato a causa delle
fluttuazioni quantistiche del vuoto gravitazionale.

11



1 Introduzione

2. Tempo di Planck tp Rappresenta la più piccola unità tempo-
rale dotata di senso fisico. Eventi separati da intervalli inferiori
a tp non possono essere distinti in modo univoco da alcuna
teoria classica.

3. Massa ed energia di Planck mp, Ep Definiscono la soglia
energetica oltre la quale le collisioni di particelle o i processi
gravitazionali generano effetti quantistici non trascurabili.
Qualsiasi descrizione classica basata sulla Relatività Ristretta
o Generale diventa inadeguata.

Le scale di Planck emergono naturalmente quando si combina-
no le tre costanti fondamentali secondo criteri dimensionali. Ad
esempio, l’energia di Planck deriva dalla condizione

[Ep] = [ℏ]1/2[c]5/2[G]−1/2,

che è l’unica combinazione dimensionale coerente con unità di
energia.

Il ruolo delle scale di Planck come frontiera teorica è duplice:

• Limite concettuale. Esse segnano i confini oltre i quali la
separazione fra Relatività Generale e Meccanica Quantistica
non è più sostenibile. Al di sopra di Ep, si ipotizza che lo
spazio-tempo stesso diventi quantizzato.

• Guida sperimentale. Sebbene irraggiungibili nelle condizioni
ordinarie di laboratorio (gli acceleratori moderni raggiungono
al massimo E ∼ 104 GeV), le scale di Planck potrebbero
essere sondate indirettamente tramite fenomeni astrofisici e
cosmologici: raggi cosmici ultra-energetici, collassi stellari,
radiazione di fondo cosmica e segnali gravitazionali.

Il quadro della Relatività Ristretta Planckiana pone l’energia di
Planck Ep sullo stesso piano della velocità della luce c, elevandola
a costante universale e invariante. Se c rappresenta un limite supe-
riore per le velocità meccaniche, Ep diventa un limite superiore per
l’energia concentrata in un singolo evento fisico elementare, inva-
riante in tutti i sistemi inerziali. Ciò introduce una nuova simmetria
speculare che modifica profondamente la cinematica e la dinamica
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1.3 L’energia di Planck come costante universale invariante

dei sistemi ad alta energia, fornendo una possibile via per superare
i limiti interni della Relatività di Einstein e avvicinarsi a una teoria
coerente della gravità quantistica.

1.3 L’energia di Planck come costante universale
invariante

L’energia di Planck, definita come

Ep =

√
ℏc5

G
,

rappresenta la più alta scala energetica coerente ottenibile a partire
dalle tre costanti universali ℏ, c e G. Essa non dipende da scelte
arbitrarie di unità di misura o da convenzioni particolari, ma è
imposta unicamente dalla struttura dimensionale della fisica fon-
damentale. In tal senso, Ep si configura come un limite naturale,
esattamente come la velocità della luce c funge da limite per le
velocità meccaniche nella Relatività Ristretta.

Dal punto di vista della Relatività Ristretta Planckiana (RRP),
il postulato di invarianza di Ep stabilisce che tale energia costituisce
un massimo assoluto non superabile da alcun processo fisico ele-
mentare. Questo implica che, così come nessun corpo materiale può
raggiungere v = c, nessun evento locale può concentrare un’energia
superiore a Ep.

Formalmente, ciò si traduce nell’introduzione di un nuovo fattore
di trasformazione:

γE(E) = 1√
1−

(
E
Ep

)2
, 0 ≤ E < Ep.

Il limite E → Ep porta a γE →∞, analogamente al limite v → c
nella Relatività di Einstein. La divergenza del fattore γE riflette
l’impossibilità fisica di oltrepassare la soglia di Ep, garantendone
così l’invarianza.

Questa proprietà di invarianza si verifica in tutti i sistemi iner-
ziali. Consideriamo due osservatori, O e O′, in moto relativo. Se

13



1 Introduzione

un evento locale ha energia E = Ep per O, allora la trasformazione
planckiana

E′ = f(E, βE),
con βE = E/Ep, deve restituire ancora E′ = Ep. Ciò garantisce che
Ep non solo è un limite superiore, ma è anche identico in qualunque
sistema di riferimento, esattamente come accade per c.

Un’ulteriore conseguenza della natura invariante di Ep emerge
confrontando con le trasformazioni di Lorentz. Nel caso classico, la
composizione di velocità rispetta la legge

v12 = v1 + v2

1 + v1v2
c2
,

che assicura v < c. Nel formalismo planckiano, la composizione
delle energie assume la forma

β12 = β1 + β2

1 + β1β2
, βi = Ei

Ep
,

che implica
E12 < Ep se E1, E2 < Ep.

La struttura matematica assicura quindi la stabilità del bound
energetico, dimostrando che Ep rimane costante e universale sotto
trasformazioni e composizioni.

Dal punto di vista concettuale, l’elevazione di Ep a costante
invariante modifica la gerarchia dei limiti fisici. Se la Relatività
Ristretta è fondata sulla coppia (c,m0), con m0 massa a riposo e c
limite di velocità, la Relatività Ristretta Planckiana introduce la
coppia (Ep, c), in cui la velocità della luce governa la cinematica e
l’energia di Planck governa la dinamica dei regimi ultra-energetici.
Questo dualismo rappresenta un’estensione simmetrica del principio
di relatività, stabilendo una nuova costante universale fondamentale.

1.4 Simmetria speculare tra velocità della luce c ed
energia di Planck Ep

Uno degli aspetti centrali della Relatività Ristretta Planckiana
(RRP) è l’introduzione di una simmetria concettuale tra due co-
stanti universali: la velocità della luce c, che delimita lo spazio delle

14



1.4 Simmetria speculare tra velocità della luce c ed energia di Planck Ep

velocità, e l’energia di Planck Ep, che rappresenta il limite superiore
delle energie fisiche localizzate. La struttura matematica è costruita
in modo tale che le formule cinematiche della Relatività Ristret-
ta vengano “specchiate” in un dominio energetico, sostituendo il
rapporto v/c con E/Ep.

Nella Relatività Ristretta classica, il fattore di Lorentz è definito
da:

γv = 1√
1−

(
v
c

)2 .
Questo fattore diverge quando v → c, imponendo che nessun sistema
materiale possa raggiungere o superare la velocità della luce.

Nel formalismo planckiano, si introduce un fattore del tutto
analogo:

γE = 1√
1−

(
E
Ep

)2
.

In questo caso, è l’energia a essere vincolata da un limite superiore.
Per E → Ep, il fattore γE diverge, rendendo fisicamente impossibile
oltrepassare Ep.

La simmetria tra le due strutture può essere messa in evidenza
riscrivendo le trasformazioni. Per la cinematica relativistica, la
trasformazione di Lorentz lungo la direzione x assume la forma:

x′ = γv (x− vt),

t′ = γv

(
t− v

c2x

)
.

La controparte planckiana si ottiene sostituendo il parametro di
velocità con un parametro energetico:

x′ = γE (x− uEt),

t′ = γE

(
t− uE

c2
E

x

)
,

dove

uE = E

Ep
cE ,

15



1 Introduzione

con cE una costante di velocità introdotta per coerenza
dimensionale.

Questa corrispondenza stabilisce una perfetta simmetria formale:

v

c
←→ E

Ep
,

γv ←→ γE .

Tale dualità non è soltanto un artificio matematico, ma ha
conseguenze profonde. Nella Relatività di Einstein, l’invarianza di
c assicura che la struttura dello spazio-tempo sia la stessa in tutti
i sistemi inerziali. Nella RRP, l’invarianza di Ep garantisce che la
struttura energetica dell’universo sia la stessa in tutti i sistemi di
riferimento, impedendo che processi fisici localizzati superino la
soglia planckiana.

Un aspetto cruciale è che la simmetria tra c ed Ep si estende
alla legge di composizione. Per le velocità, la Relatività Ristretta
impone:

v12 = v1 + v2

1 + v1v2
c2
,

che preserva il bound v < c. In forma speculare, la RRP definisce:

β12 = β1 + β2

1 + β1β2
, βi = Ei

Ep
,

che preserva il bound E < Ep. La simmetria tra queste due leggi
di composizione dimostra che la struttura di gruppo sottostante è
isomorfa: in entrambi i casi l’algebra di Lie è so(1, 3), con la sola
differenza interpretativa tra domini cinematici ed energetici.

Da un punto di vista teorico, questa simmetria speculare sug-
gerisce l’esistenza di una “doppia relatività”: una basata su c, che
governa la propagazione nello spazio-tempo, e una basata su Ep,
che governa i limiti energetici dei processi fisici. L’introduzione di
entrambe le costanti come invarianti universali amplia il principio
di relatività a un quadro più generale, in cui lo spazio-tempo e lo
spazio-energia sono trattati come domini duali della stessa struttura
matematica.
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1.5 Obiettivi: coerenza matematica, predizioni
verificabili, programma di ricerca sperimentale

La formulazione della Relatività Ristretta Planckiana (RRP) nasce
dall’esigenza di estendere i principi relativistici oltre i limiti stabiliti
dalle teorie einsteiniane, introducendo come nuova costante univer-
sale l’energia di Planck Ep. Gli obiettivi della teoria possono essere
articolati su tre livelli complementari: (i) la consistenza matematica
interna, (ii) la capacità di produrre predizioni verificabili e (iii) la
definizione di un programma sperimentale per la falsificabilità.

1. Coerenza matematica. La prima esigenza è la costruzione
di un formalismo rigoroso che garantisca stabilità logica e consi-
stenza algebrica. Il cuore della RRP è l’introduzione del fattore
planckiano

γE = 1√
1−

(
E
Ep

)2
,

che ricalca il ruolo del fattore di Lorentz ma traslato nel dominio
energetico. È necessario dimostrare che tale struttura preserva la
proprietà di gruppo delle trasformazioni, ossia che le composizioni
di boost energetici obbediscono a una legge chiusa:

β12 = β1 + β2

1 + β1β2
, βi = Ei

Ep
,

e che questa regola assicura l’invarianza del vincolo |E| < Ep.
Inoltre, l’analisi dei generatori

[Ji, Jj ] = ϵijkJk, [Ji, Kj ] = ϵijkKk, [Ki, Kj ] = −ϵijkJk

mostra che l’algebra è isomorfa a so(1, 3), garantendo che la strut-
tura matematica sottostante sia compatibile con il formalismo
lorentziano.

2. Predizioni verificabili. La RRP deve fornire risultati con-
creti che si distinguano dalla Relatività Ristretta e Generale nei
regimi prossimi alla scala di Planck. Tra le principali predizioni si
annoverano:

17



1 Introduzione

• Accelerazione del tempo proprio: per E → Ep, il rapporto

dτ

dt
= γE(E)→∞

indica un’accelerazione del tempo fisico rispetto al tempo
geometrico, con implicazioni sui processi microscopici estremi.

• Cosmologia planckiana: in epoche con densità energetica
prossima a Ep, l’espansione dell’universo dovrebbe mostra-
re deviazioni osservabili rispetto agli scenari inflazionari
standard.

• Buchi neri regolari: la sostituzione

T eff
µν = Tµν

γ2
E

nelle equazioni di Einstein suggerisce una riduzione della
singolarità centrale e la possibilità di geometrie regolari.

• Collisioni ad altissima energia: nei raggi cosmici ultra-
energetici (E ∼ 1020 eV) dovrebbero emergere deviazioni
cinematiche misurabili rispetto alle previsioni einsteiniane.

3. Programma di ricerca sperimentale. Affinché la RRP
possa essere valutata dalla comunità scientifica, occorre delineare
un piano sperimentale coerente. Alcune direzioni includono:

• Acceleratori di particelle: anche se lontani da Ep, i futuri colli-
sori multi-TeV (es. FCC, CEPC) potrebbero rivelare deviazioni
minime da testare con precisione statistica.

• Astrofisica delle alte energie: l’osservazione dei raggi cosmici
di massima energia e dei lampi gamma (GRB) fornisce un
laboratorio naturale per sondare effetti planckiani.

• Onde gravitazionali: la rilevazione di segnali provenienti da
collassi stellari estremi e fusione di buchi neri può essere
analizzata in cerca di frequenze massime attenuate da fattori
γE .
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1.6 Confronto con le estensioni relativistiche esistenti

• Cosmologia osservativa: telescopi come JWST o missioni
CMB di nuova generazione potrebbero misurare anomalie nel
redshift cosmologico, indicativi di una dinamica planckiana.

La RRP si pone dunque come un’estensione concettualmente
rigorosa della Relatività, capace di mantenere la simmetria ma-
tematica, fornire predizioni concrete e proporre scenari di test
sperimentali che consentano di verificarne la validità o di escluderla.

1.6 Confronto con le estensioni relativistiche
esistenti

1.6.1 Relatività a due scale invarianti (DSR) e confronto
con la RRP

La Doubly Special Relativity (DSR), proposta inizialmente da
Amelino-Camelia e successivamente sviluppata in diversi forma-
lismi (κ-Poincaré, teorie con algebra deformata, ecc.), introduce
accanto alla velocità della luce c una seconda costante invariante: la
lunghezza di Planck Lp (o, in modo equivalente, l’energia di Planck
Ep). L’obiettivo principale è quello di costruire una cinematica in
cui le trasformazioni di Lorentz vengano deformate in modo tale
da preservare, oltre a c, anche Lp come quantità universale.

Motivazioni della DSR. L’idea nasce dal tentativo di incorpo-
rare gli effetti quantistici della gravità senza rinunciare al principio
di relatività. Poiché i modelli di gravità quantistica (stringhe, loop
quantum gravity) suggeriscono l’esistenza di una lunghezza minima
Lp, la DSR si propone come un’estensione naturale della Relatività
Ristretta per energie E ≲ Ep.

Struttura matematica. In DSR le relazioni di dispersione
vengono modificate in modo covariante:

E2 − c2p2 −m2c4 + f(E, p;Lp) = 0,

dove f(E, p;Lp) rappresenta termini correttivi (ad esempio f ∼
Lpcp

2E). Inoltre, i boost assumono una forma non lineare nello

19



1 Introduzione

spazio degli impulsi, del tipo:

dE

dξ
= −cpz,

dpz
dξ

= −E
c
− L̃p

2c2E
2 − L̃p

2 p2
z,

con ξ rapidità deformata. Le trasformazioni restano coerenti con
un’algebra deformata (κ-Poincaré).

Limiti concettuali e sperimentali della DSR. Nonostante la
coerenza algebrica, la DSR presenta diversi problemi:

1. Soccer-ball problem: difficoltà a estendere la teoria a siste-
mi macroscopici composti da molte particelle, per i quali la
deformazione dovrebbe essere trascurabile.

2. Ambiguità nella conservazione: esistono diverse formu-
lazioni per le leggi di conservazione di energia e quantità di
moto, non sempre univoche.

3. Interpretazione geometrica: la DSR agisce sullo spazio
degli impulsi, senza una formulazione diretta sullo spazio-
tempo, se non in approcci complessi come la “relative locality”.

4. Predizioni non confermate: inizialmente si pensava che la
DSR modificasse la soglia del GZK cutoff dei raggi cosmici
ultra-energetici. Tuttavia, studi successivi hanno mostrato che
la DSR standard non predice alcuna soppressione del GZK
cutoff, a differenza di modelli con riferimento assoluto.

5. Velocità della luce energia-dipendente: in molte formula-
zioni la DSR implica che c dipenda dall’energia. Ciò porterebbe
a ritardi misurabili tra fotoni ad alta e bassa energia prove-
nienti da lampi gamma (GRB). Tuttavia, osservazioni del
Fermi-LAT (2009) hanno mostrato che fotoni fino a 31 GeV
arrivano quasi simultaneamente ad altri di energia inferiore,
escludendo effetti di dispersione di primo ordine anche oltre
la scala di Planck.

6. Inconsistenze teoriche: una dipendenza energia-dipendente
di c porterebbe a interazioni non locali tra particelle, già
escluse dalla fisica delle alte energie. Pertanto, le versioni della
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1.6 Confronto con le estensioni relativistiche esistenti

DSR con correzioni di primo ordine risultano oggi fortemente
disfavorevoli.

Differenze concettuali con la RRP. La Relatività Ristretta
Planckiana (RRP) si distingue nettamente:

• La costante invariante fondamentale non è la lunghezza di
Planck Lp, ma l’energia di Planck Ep.

• La RRP mantiene intatta l’algebra di Lorentz:

[Ji, Jj ] = ϵijkJk, [Ji, Kj ] = ϵijkKk, [Ki, Kj ] = −ϵijkJk,

con l’unica differenza che i boost agiscono nello spazio delle
energie:

βE = E

Ep
, γE = 1√

1− (E/Ep)2
.

• La RRP introduce una simmetria speculare rispetto alla RR:
al posto di v/c si utilizza E/Ep, con lo stesso formalismo
matematico.

• In DSR le relazioni di dispersione sono perturbative e modello-
dipendenti; in RRP l’invarianza è esatta e basata su γE , senza
ambiguità.

• Il problema della composizione non sorge in RRP: la legge di
addizione energetica è la stessa delle velocità relativistiche,

β12 = β1 + β2

1 + β1β2
, βi = Ei

Ep
,

che garantisce E < Ep anche per processi composti.
• Inoltre, la RRP può essere vista come un’estensione teorica

della Teoria Unificata della Coscienza (TUC)2, in cui la stessa
legge di invarianza planckiana era stata formulata in termini
fenomenologici della coscienza. La RRP ne costituisce la for-
malizzazione in fisica classica, con l’obiettivo di verificarne la
validità empirica.

2Cfr. De Angelis, A. (2025). TUC – Teoria Unificata della Coscienza. Volume I:
Fondamenti formali e dinamiche emergenti. Zenodo. 10.5281/zenodo.16792942.

21



1 Introduzione

Sintesi. La DSR e la RRP condividono l’idea di introdurre una
nuova scala invariante, ma divergono radicalmente:

• La DSR deforma la cinematica di Lorentz e implica spesso
effetti energia-dipendenti della velocità della luce, oggi esclusi
sperimentalmente in prima approssimazione.

• La RRP mantiene la struttura di Lorentz ed estende il princi-
pio di relatività con una simmetria speculare tra c ed Ep, risul-
tando più semplice, coerente e libera dalle principali criticità
teoriche e sperimentali che affliggono la DSR.

1.6.2 Gravity’s Rainbow e confronto con la RRP

La teoria nota come Gravity’s Rainbow, proposta da Magueijo
e Smolin (2003–2004), rappresenta un’estensione della Relatività
Generale in cui la metrica dello spaziotempo dipende esplicitamente
dall’energia delle particelle che lo attraversano. L’idea centrale è
che la geometria percepita non sia universale, ma “arcobaleno”,
cioè energia-dipendente, regolata da due funzioni adimensionali
f(E/EPl) e g(E/EPl). Queste, nel limite E/EPl → 0, devono
tendere all’unità, in modo da recuperare la Relatività Generale
standard.

Motivazioni di Gravity’s Rainbow. Il punto di partenza è
l’analogia con la Doubly Special Relativity (DSR), dove accanto a
c si introduce una seconda scala invariante legata a EPl. Gravity’s
Rainbow estende questa idea al settore gravitazionale, ipotizzando
che la curvatura stessa possa variare in funzione dell’energia della
particella test. In questo quadro, la metrica prende la forma:

ds2 = − (dx0)2

f2(E/EPl)
+ (dxi)2

g2(E/EPl)
,

così che ogni energia definisca una “famiglia” distinta di spaziotempi.

Struttura matematica. Le equazioni di Einstein vengono
modificate in maniera energia-dipendente:

Gµν(E) = 8πG(E)Tµν(E) + gµνΛ(E),
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1.6 Confronto con le estensioni relativistiche esistenti

dove sia G sia Λ diventano funzioni di E. A livello cosmologico, la
metrica FRW si deforma in:

ds2(E) = − dt2

f2(E) + a2(t)
g2(E) γijdx

idxj ,

con equazioni di Friedmann modificate che possono, in principio,
risolvere il problema dell’orizzonte e ridurre le singolarità.

Limiti concettuali e critiche. Nonostante l’eleganza formale,
Gravity’s Rainbow è stata oggetto di critiche severe:

1. Assenza di quantizzazione coerente. Non esiste una formu-
lazione quantistica completa che renda il modello compatibile
con il Modello Standard delle particelle.

2. Non-località. La dipendenza della metrica dall’energia con-
duce a fenomeni di non-località, già esclusi dagli esperimenti
di fisica delle alte energie.

3. Ambiguità interpretativa. La teoria non chiarisce se le fun-
zioni f e g siano universali o dipendano dal tipo di particella.
Inoltre, il principio di equivalenza risulta deformato.

4. Critiche della comunità. Sabine Hossenfelder ha osservato
che “Rainbow Gravity non è né una teoria né un modello
completo, ma solo un’idea che, nonostante oltre un decennio
di lavoro, non si è sviluppata in una formulazione coerente.
Non è compatibile con il Modello Standard, porta a non-
località escluse e non dovrebbe essere pubblicata finché questi
problemi non vengano risolti”.

Differenze concettuali con la RRP. La Relatività Ristretta
Planckiana (RRP) differisce radicalmente:

• In RRP non si introduce una metrica energia-dipendente:
lo spaziotempo resta universale, con struttura lorentziana
invariata.

• La costante invariante fondamentale è l’energia di Planck Ep,
assunta come limite superiore universale, senza dipendenza
da funzioni arbitrarie f e g.
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• Le trasformazioni mantengono l’algebra di Lorentz intatta,
con boost energetici caratterizzati da

βE = E

Ep
, γE = 1√

1− (E/Ep)2
,

mentre in Gravity’s Rainbow la simmetria di Lorentz è
deformata e sostituita da metriche energia-dipendenti.

• La RRP implementa una simmetria speculare tra velocità e
energia, senza introdurre non-località né modificare il principio
di equivalenza.

• Sul piano fenomenologico, Gravity’s Rainbow predice varia-
zioni della velocità della luce e orizzonti energia-dipendenti,
già esclusi sperimentalmente, mentre la RRP propone effetti
testabili in regimi planckiani (Big Bounce, buchi neri regolari,
onde gravitazionali attenuate).

Sintesi. Gravity’s Rainbow rappresenta un tentativo di estendere
la DSR al settore gravitazionale, ma soffre di limiti strutturali e
critiche fondamentali, che ne mettono in dubbio la validità. La
Relatività Ristretta Planckiana, al contrario, conserva la coerenza
algebrica della Relatività Speciale ed eleva Ep a costante universale,
proponendosi come estensione più semplice, rigorosa e compatibile
con i principi di località e universalità dello spaziotempo.

1.6.3 Relatività Speciale de Sitter (dSSR) e confronto
con la RRP

La de Sitter Special Relativity (dSSR) nasce dall’idea di sostituire
il gruppo di Poincaré, che governa la Relatività Ristretta (RR) di
Einstein, con il gruppo di simmetria più ampio SO(4, 1) (o SO(3, 2)
in caso anti-de Sitter). In questo quadro, lo spaziotempo non è
piatto ma dotato di curvatura costante regolata dalla costante
cosmologica Λ, che introduce un raggio di curvatura fondamentale

l2 = 3
Λ .
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Motivazioni della dSSR. La teoria è motivata dalla volontà di
includere fin dall’inizio la costante cosmologica nel principio di rela-
tività, riconoscendo Λ come costante universale al pari di c. Inoltre,
l’adozione del gruppo SO(4, 1) permette di descrivere in modo più
naturale spazi-tempi cosmologici omogenei e isotropi, superando
i limiti della Relatività Speciale che si fonda sullo spaziotempo di
Minkowski.

Struttura matematica. Lo spaziotempo de Sitter può essere
descritto come un iperspazio immerso in cinque dimensioni:

ηabχ
aχb + (χ4)2 = l2,

con ηab metrica di Minkowski. In coordinate stereografiche, la
metrica assume la forma conforme:

gµν = Ω2(x)ηµν , Ω(x) = 1
1− σ2/4l2 ,

dove σ2 = ηabx
axb. Le traslazioni ordinarie vengono sostituite da

combinazioni di traslazioni e trasformazioni conformi, e le quantità
conservate si ridefiniscono come correnti di Noether associate al
gruppo SO(4, 1).

Limiti concettuali. La dSSR, pur elegante, presenta alcune
criticità:

1. Parametrizzazione arbitraria. La costante l (o Λ) è in-
trodotta come parametro esterno, non derivato naturalmente
dalla teoria, riducendo il potere predittivo.

2. Effetti non misurabili. Con il valore osservato della costante
cosmologica (Λ ∼ 10−52 m−2), gli effetti cinematici di dSSR ri-
sultano estremamente piccoli e non accessibili alle osservazioni
attuali.

3. Instabilità quantistica. Analisi di teoria quantistica dei
campi su sfondi de Sitter indicano che il vuoto di Bunch–Davies
può essere instabile sotto perturbazioni, sollevando dubbi sulla
consistenza quantistica dello scenario.
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4. Problemi di conservazione. La mancanza di traslazioni
standard complica la definizione di energia e impulso, rendendo
meno immediata la connessione con la fisica osservabile.

Differenze concettuali con la RRP. La Relatività Ristretta
Planckiana (RRP) si distingue nettamente dalla dSSR:

• Nella dSSR la nuova costante universale è geometrica, il rag-
gio di curvatura l =

√
3/Λ, mentre nella RRP la costante

fondamentale è dinamica, l’energia di Planck Ep =
√
ℏc5/G.

• La dSSR si fonda sulla sostituzione del gruppo di Poincaré con
SO(4, 1), modificando la struttura globale dello spaziotempo.
La RRP, invece, mantiene intatta l’algebra di Lorentz so(1, 3):

[Ji, Jj ] = ϵijkJk, [Ji, Kj ] = ϵijkKk, [Ki, Kj ] = −ϵijkJk,

introducendo soltanto un nuovo dominio energetico attraverso
il boost planckiano

γE = 1√
1− (E/Ep)2

.

• La dSSR descrive deviazioni su scale cosmologiche enormi,
difficilmente testabili sperimentalmente; la RRP mira invece
a regimi di altissima energia, in prossimità di Ep, offrendo
predizioni verificabili in astrofisica delle alte energie e nelle
onde gravitazionali.

• La dSSR ridefinisce le quantità di moto attraverso correnti
di Noether modificate, mentre la RRP conserva le relazio-
ni canoniche di dispersione introducendo una massa efficace
meff = mγE e un tensore energia-impulso attenuato

T eff
µν = Tµν

γ2
E

.
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Sintesi. La de Sitter relativity rappresenta un’estensione geome-
trica della Relatività Speciale basata sulla costante cosmologica, con
implicazioni soprattutto cosmologiche e astrofisiche. La Relatività
Ristretta Planckiana, invece, introduce un limite dinamico sull’e-
nergia massima dei processi locali, con una simmetria speculare
rispetto alla velocità della luce c. Le due teorie condividono l’idea di
estendere il principio di relatività con una nuova costante universale,
ma differiscono profondamente ma differiscono profondamente per
natura, scopo e dominio fenomenologico.

2 Postulati fondamentali della Relatività
Ristretta Planckiana (RRP)

Dalla combinazione delle tre costanti universali ℏ, c e G emergono in
maniera univoca le scale di Planck, che rappresentano soglie fisiche
fondamentali. Esse non sono parametri arbitrari, ma definizioni
naturali che stabiliscono il confine fra regime classico e regime
quantistico-gravitazionale. La loro introduzione è imprescindibile
per lo sviluppo della Relatività Ristretta Planckiana (RRP).

Energia di Planck. L’energia di Planck è definita come

Ep =

√
ℏc5

G
,

che in unità numeriche corrisponde a

Ep ≈ 1.956× 109 J ≈ 1.2209× 1019 GeV.

Essa rappresenta il limite superiore teorico per l’energia concentra-
bile in un singolo evento localizzato nello spazio-tempo. In RRP, Ep
gioca il ruolo che c riveste nella Relatività Ristretta: una costante
universale invariante, non superabile.

Lunghezza di Planck. La lunghezza di Planck è definita come

lp =
√

ℏG
c3 ,
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con valore

lp ≈ 1.616× 10−35 m.

Essa rappresenta la scala minima di significatività spaziale: al di
sotto di lp il concetto classico di distanza perde validità. Qualsia-
si fenomeno fisico deve essere descritto tenendo conto di effetti
quantistici e gravitazionali.

Tempo di Planck. Il tempo di Planck è definito come

tp = lp
c

=
√

ℏG
c5 ,

pari a

tp ≈ 5.391× 10−44 s.

Esso rappresenta la durata minima fisicamente significativa di un
intervallo temporale. In cosmologia, corrisponde all’epoca primor-
diale in cui le descrizioni classiche dello spazio-tempo cessano di
essere applicabili.

Massa di Planck. Infine, la massa di Planck è

mp =
√

ℏc
G
,

con valore

mp ≈ 2.176× 10−8 kg.

Essa costituisce la massa caratteristica per cui gli effetti quantistici
e gravitazionali si bilanciano. Un corpo con massa pari a mp ha
un raggio di Schwarzschild dell’ordine della sua lunghezza d’onda
Compton, un risultato che segnala la soglia critica fra descrizione
quantistica e gravitazionale.

Ruolo delle scale di Planck nella RRP. Nella Relatività
Ristretta Planckiana, queste scale assumono un significato operativo:
- Ep è assunto come costante universale invariante, limite superiore
dell’energia. - lp e tp definiscono le soglie inferiori di misura dello
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2.1 Postulato 1 – Invarianza dell’energia di Planck

spazio e del tempo. - mp funge da scala naturale di riferimento per
la massa, oltre la quale la descrizione classica non è più sufficiente.

Queste grandezze introducono un quadro concettuale in cui la
struttura dello spazio-tempo non è più indefinitamente divisibile,
ma vincolata da soglie fisiche precise. La RRP si propone di esten-
dere la coerenza della Relatività Ristretta incorporando tali limiti,
così come la Relatività di Einstein ha esteso la meccanica classica
imponendo l’invarianza di c.

2.1 Postulato 1 – Invarianza dell’energia di Planck
Il primo postulato della Relatività Ristretta Planckiana (RRP)
stabilisce che l’energia di Planck costituisce una costante universale,
analogamente a quanto avviene per la velocità della luce c nella
Relatività Ristretta di Einstein. Tale costante rappresenta il limite
superiore invalicabile per l’energia associata a un singolo evento
fisico elementare o a un processo localizzato nello spazio-tempo.

L’energia di Planck è definita a partire dalle tre costanti fon-
damentali della fisica teorica: la costante di Planck ridotta ℏ, la
velocità della luce c e la costante di gravitazione universale G. Essa
è data da:

Ep =

√
ℏc5

G
.

Il valore numerico corrispondente risulta:

Ep ≈ 1.956× 109 J ≈ 1.2209× 1019 GeV.

Dalla stessa definizione emergono in maniera naturale altre
quantità di scala, che costituiscono i parametri caratteristici della
fisica planckiana:

lp =
√

ℏG
c3 ≈ 1.616× 10−35 m,

tp = lp
c

=
√

ℏG
c5 ≈ 5.391× 10−44 s,
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mp = Ep
c2 =

√
ℏc
G
≈ 2.176× 10−8 kg.

Queste grandezze definiscono le unità naturali di Planck, che
segnano il confine tra la fisica classica relativistica e il dominio
quantistico-gravitazionale.

Il postulato di invarianza di Ep afferma che, così come c è
la stessa in tutti i sistemi inerziali indipendentemente dal moto
relativo, l’energia di Planck non dipende dallo stato inerziale di
osservazione: essa è una costante universale che vincola la dinamica
e la cinematica dei sistemi ad alta energia.

Dal punto di vista formale, il postulato può essere espresso come:

E′
p = Ep ∀ sistemi di riferimento inerziali.

Ne consegue che nessun sistema fisico può possedere un’energia
propria superiore a Ep, poiché tale valore rappresenta un limite asin-
totico e invalicabile. In altre parole, se nella Relatività Ristretta il
vincolo fondamentale è rappresentato dall’impossibilità di superare
la velocità della luce, nella Relatività Ristretta Planckiana emerge
un vincolo duale: l’impossibilità di eccedere l’energia di Planck.

Questo postulato fornisce la base concettuale per l’intera strut-
tura della teoria, poiché tutte le successive formulazioni cinematiche
e dinamiche si costruiscono imponendo la coerenza matematica con
tale limite assoluto.

2.2 Postulato 2 – Equivalenza della misura temporale
in presenza di energia

Il secondo postulato della Relatività Ristretta Planckiana introduce
un’estensione fondamentale del concetto di tempo proprio. Nella
Relatività Ristretta di Einstein, il tempo proprio τ di un osservatore
inerziale in moto con velocità v è connesso al tempo coordinato t
da un fattore di Lorentz γ(v):

dτ

dt
= 1
γ(v) =

√
1−

(
v

c

)2
.
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2.2 Postulato 2 – Equivalenza della misura temporale in presenza di
energia

In maniera speculare, la Relatività Ristretta Planckiana intro-
duce un fattore di estensione energetica γE(E), che lega il tempo
proprio di un sistema al suo contenuto energetico totale E. La
definizione formale è:

γE(E) = 1√
1−

(
E
Ep

)2
, 0 ≤ E < Ep.

La relazione tra tempo coordinato t e tempo proprio τ risulta
dunque modificata in:

dτ

dt
= γE(E).

Questa equazione stabilisce che la misura del tempo non dipende
soltanto dallo stato di moto, ma anche dal contenuto energetico del
sistema fisico. Il parametro E/Ep gioca un ruolo analogo a v/c, ma
in un dominio speculare: quello delle energie invece delle velocità.

Interpretazione fisica

• Per energie trascurabili rispetto a quella di Planck (E → 0),
si ha:

γE(E) ≈ 1, dτ ≈ dt,

ossia il tempo proprio coincide con il tempo coordinato,
recuperando il limite classico.

• Per energie prossime al limite di Planck (E → Ep), il fattore
γE diverge:

lim
E→Ep

γE(E) = +∞,

conseguentemente:

lim
E→Ep

dτ

dt
= +∞.

Questo implica che il tempo proprio accelera indefinitamente ri-
spetto al tempo coordinato: un effetto opposto alla dilatazione
temporale relativistica classica.
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2 Postulati fondamentali della Relatività Ristretta Planckiana (RRP)

Dimostrazione della coerenza matematica
La definizione di γE(E) assicura che:

0 ≤ E

Ep
< 1 ⇒ γE(E) ∈ [1,+∞).

Pertanto:

dτ

dt
≥ 1,

ossia il tempo proprio di un sistema fisico in presenza di energia
scorre sempre più velocemente rispetto al tempo coordinato. Il
limite inferiore dτ/dt = 1 corrisponde a E = 0, mentre il limite
superiore è asintotico, non raggiungibile fisicamente.

Conseguenze operative

1. Il tempo diviene una variabile dinamica non più universale,
ma dipendente dal contenuto energetico del sistema.

2. L’effetto di accelerazione del tempo proprio costituisce una
nuova predizione fisica: sistemi ad altissima energia evolvono
internamente molto più rapidamente di quanto non indichi il
tempo coordinato.

3. Questo postulato crea una simmetria speculare con la Relativi-
tà Ristretta: mentre in Einstein l’aumento di velocità rallenta
il tempo proprio, nella RRP l’aumento di energia accelera il
tempo proprio.

2.3 Postulato 3 – Simmetria speculare tra c ed Ep

Il terzo postulato della Relatività Ristretta Planckiana (RRP) intro-
duce una simmetria formale tra la costante universale della velocità
della luce c e l’energia di Planck Ep. In Relatività Ristretta (RR),
la dinamica dei sistemi inerziali è governata dal fattore di Lorentz

γv = 1√
1−

(
v
c

)2 ,
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2.3 Postulato 3 – Simmetria speculare tra c ed Ep

dove v rappresenta la velocità relativa tra due sistemi di riferi-
mento. Questo fattore genera fenomeni ben noti come la dilatazione
temporale e la contrazione spaziale.

In analogia, la RRP definisce un fattore di trasformazione planc-
kiano, costruito a partire dal rapporto tra l’energia del sistema e
l’energia di Planck:

γE = 1√
1−

(
E
Ep

)2
,

dove 0 ≤ E < Ep. Questo fattore governa trasformazioni cine-
matiche che risultano speculari a quelle einsteiniane, ma con effetti
invertiti: accelerazione del tempo proprio e dilatazione spaziale.

Le trasformazioni generali tra due sistemi inerziali in regime
planckiano assumono la forma

x′ = γE (x− uEt) ,

t′ = γE

(
t− uE

c2
E

x

)
,

dove la quantità uE è definita come

uE = E

Ep
cE ,

con cE una costante di velocità introdotta per garantire coerenza
dimensionale.

Queste relazioni mostrano che la RRP conserva la struttura
matematica della RR, ma sostituendo formalmente il rapporto v/c
con E/Ep. Ne consegue che:

• per E ≪ Ep, si ha γE ≈ 1 e le trasformazioni si riducono a
quelle classiche newtoniane;

• per v ≪ c, si ha γv ≈ 1 e la RR recupera la meccanica classica.
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3 Cinematica planckiana

La simmetria v/c↔ E/Ep stabilisce dunque un dualismo forma-
le tra la dinamica dei sistemi ad alta velocità e quella dei sistemi ad
alta energia, fornendo una nuova struttura di gruppo che mantiene
invariante l’intervallo planckiano:

s2
E = (cEt)2 − |x|2.

In questo modo, la RRP estende la cinematica relativistica,
vincolando non solo le velocità massime raggiungibili, ma anche le
energie massime consentite a un sistema inerziale.

3 Cinematica planckiana

3.1 4-coordinate planckiane e nuova metrica

Per estendere la struttura spazio-temporale einsteiniana all’ambito
energetico-planckiano, introduciamo una nuova definizione di qua-
drivettore, che incorpora l’energia come parametro fondamentale
di trasformazione.

Definiamo la quattro-coordinata energetica come

Xµ =
(
cEt, x

)
dove cE è una costante di velocità che assicura la coerenza dimen-
sionale, analoga al ruolo della velocità della luce c nella Relatività
Ristretta classica.

La metrica adottata mantiene la forma minkowskiana:

ηµν = diag(1,−1,−1,−1)

così che l’intervallo planckiano risulti definito da:

s2
E = (cEt)2 − |x|2.

Questa struttura garantisce l’invarianza dell’intervallo sotto
trasformazioni di boost planckiani.
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3.1 4-coordinate planckiane e nuova metrica

Parametro di boost energetico. Il parametro di boost energetico
è definito come:

βE = uE
cE

= E

Ep
, |βE | < 1

dove E rappresenta l’energia caratteristica del sistema inerziale
considerato, ed Ep è l’energia di Planck, limite superiore invalicabile.

Il corrispondente fattore di Lorentz planckiano è dato da:

γE = 1√
1− β2

E

.

Dimostrazione di coerenza con il formalismo relativistico.
Consideriamo due sistemi inerziali planckiani, in moto relativo con
energia associata E. L’invarianza dell’intervallo richiede che:

(cEt′)2 − |x′|2 = (cEt)2 − |x|2 = s2
E .

Le trasformazioni compatibili con tale condizione devono neces-
sariamente coinvolgere il parametro βE = E/Ep. Applicando la
definizione di γE , si verifica che il boost planckiano soddisfa la
relazione:

BT
E η BE = η,

ossia appartiene al gruppo SO(1, 3), confermando che la struttura
algebrica della cinematica resta identica a quella della Relatività
Ristretta, con la sostituzione:

v

c
−→ E

Ep
.

Interpretazione fisica.
1. Per E ≪ Ep, si ha γE ≈ 1, e la cinematica planckiana si riduce

alla forma classica, recuperando i risultati della Relatività
Speciale.

2. Per E → Ep, il fattore γE → ∞, indicando che il tempo
proprio accelera indefinitamente, introducendo una dinami-
ca radicalmente diversa rispetto alla dilatazione temporale
einsteiniana.
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3 Cinematica planckiana

3.2 Boost energetici: parametro βE e fattore γE

Il cuore della Relatività Ristretta Planckiana (RRP) risiede nella
sostituzione concettuale del parametro di boost classico, espresso in
termini di velocità relativa v rispetto alla costante fondamentale c,
con un nuovo parametro energetico che mette in relazione l’energia
di un sistema fisico con l’energia di Planck Ep.
Definizione del parametro di boost energetico.

Si definisce il parametro adimensionale:

βE = uE
cE

= E

Ep
, |βE | < 1,

dove E rappresenta l’energia associata al sistema inerziale consi-
derato, Ep =

√
ℏc5

G è l’energia di Planck, e cE è una costante di
velocità introdotta per mantenere la consistenza dimensionale delle
trasformazioni. La condizione |βE | < 1 garantisce che l’energia di
un sistema non superi mai Ep, analogamente a come nella Relatività
Ristretta classica non è possibile avere |v| ≥ c.
Definizione del fattore di Lorentz planckiano.

Il fattore di dilatazione energetica, analogo al fattore di Lorentz
γ, è definito come:

γE = 1√
1− β2

E

.

Esplicitando in funzione dell’energia del sistema:

γE(E) = 1√
1−

(
E
Ep

)2
.

Analisi dei limiti.

1. Per energie molto inferiori a quella di Planck:

E ≪ Ep ⇒ γE ≈ 1,

il che implica che le trasformazioni planckiane coincidono con
quelle classiche, recuperando la meccanica di Newton.
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3.3 Invariante planckiano e struttura del gruppo di simmetria

2. Nel limite di energie prossime a Ep:

E → Ep ⇒ γE →∞,

si osserva un’accelerazione indefinita del tempo proprio e una
dilatazione spaziale, in simmetria con la dilatazione temporale
e la contrazione spaziale della Relatività Ristretta classica.

Osservazione sulla simmetria.
La struttura formale delle trasformazioni planckiane risulta

speculare a quella della Relatività Ristretta: mentre il vincolo fon-
damentale di Einstein è rappresentato dalla costanza della velocità
della luce c, nella RRP il ruolo è assunto dall’invarianza dell’energia
di Planck Ep. Questa dualità stabilisce un parallelismo matematico
tra v

c e E
Ep

, entrambi vincolati da un limite insuperabile e regolati
da un fattore di Lorentz γ o γE .
Dimostrazione della coerenza matematica.

Per verificare la consistenza formale del nuovo parametro, si
osservi che la funzione:

f(x) = 1√
1− x2

, |x| < 1,

è analitica e crescente, con f(0) = 1 e limx→1− f(x) = +∞. Ponendo
x = βE = E/Ep si ottiene che γE mantiene le stesse proprietà
formali del fattore di Lorentz classico, ma traslate nello spazio
energetico. Pertanto, l’intera struttura matematica della Relatività
Ristretta può essere replicata sostituendo:

v

c
−→ E

Ep
.

3.3 Invariante planckiano e struttura del gruppo di
simmetria

Il passo cruciale per la consistenza interna della Relatività Ristret-
ta Planckiana (RRP) è la dimostrazione che l’intervallo spazio-
energetico resta invariante sotto le trasformazioni di boost planckia-
no. Tale proprietà garantisce che la nuova cinematica sia fondata su
un gruppo di simmetria ben definito, analogo al gruppo di Lorentz.
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3 Cinematica planckiana

Definizione dell’intervallo planckiano.
Si definisce l’intervallo quadratico come:

s2
E = (cEt)2 − |x⃗|2,

dove x⃗ rappresenta la componente spaziale delle coordinate
planckiane e cE è la costante di velocità introdotta in §3.1.
Dimostrazione dell’invarianza.

Consideriamo una trasformazione di boost planckiano lungo
l’asse x: rx′ = γE(x− βEcEt),

t′ = γE
(
t− βE

cE
x
)
,

con βE = E/Ep e γE = (1− β2
E)−1/2.

Calcoliamo l’intervallo trasformato:

(cEt′)2 − (x′)2 = γ2
E

[
(cEt− βEx)2 − (x− βEcEt)2

]
.

Sviluppando i quadrati e raccogliendo i termini si ottiene:

(cEt′)2 − (x′)2 = γ2
E(1− β2

E)
[
(cEt)2 − x2].

Poiché per definizione γ2
E(1− β2

E) = 1, segue che:

(cEt′)2 − (x′)2 = (cEt)2 − x2 = s2
E ,

ovvero l’intervallo planckiano è invariante sotto boost energetici.
Struttura di gruppo.

L’invarianza appena dimostrata implica che i boost planckiani
formano un gruppo con le seguenti proprietà:

1. Chiusura: la composizione di due boost planckiani è ancora
un boost planckiano, eventualmente accompagnato da una
rotazione di Wigner in 3D. In una dimensione si ha la legge
esatta:

β12 = β1 + β2

1 + β1β2
.
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3.4 Rotazione di Wigner in 3D (composizione di boost non collineari)

2. Esistenza dell’identità: il boost nullo βE = 0 lascia invariato
lo spazio-energia.

3. Esistenza dell’inverso: ad ogni boost con parametro βE
corrisponde un boost inverso con parametro −βE .

4. Associatività: la composizione di boost rispetta la proprietà
associativa, come garantito dalla parametrizzazione tramite
rapidità energetica:

tanh(ϕE) = βE ,

per cui:

B(ϕ2)B(ϕ1) = B(ϕ1 + ϕ2).

Interpretazione.
L’insieme delle trasformazioni planckiane preserva l’invarianza

dell’intervallo s2
E e genera un gruppo isomorfo a SO(1, 3), esatta-

mente come nel caso della Relatività Ristretta classica. La differenza
risiede nel fatto che il parametro fondamentale non è più il rappor-
to v/c, ma la quantità adimensionale E/Ep, vincolata dal limite
|E| < Ep. Questo stabilisce un parallelismo formale e al tempo stes-
so un’estensione concettuale, che radica la dinamica relativistica
nello spazio delle energie oltre che nello spazio-tempo.

3.4 Rotazione di Wigner in 3D (composizione di
boost non collineari)

Nella Relatività Ristretta Planckiana (RRP), come nella Relatività
Ristretta di Einstein, la composizione di due boost non collineari
non produce semplicemente un ulteriore boost, ma genera anche una
rotazione supplementare detta rotazione di Wigner (o di Thomas).
Questo fenomeno è una conseguenza diretta della non commuta-
tività dei boost nello spazio delle trasformazioni di Lorentz e ne
preserva la struttura di gruppo.

Convenzioni.

39



3 Cinematica planckiana

Siano dati due boost planckiani caratterizzati da energie E1 e
E2, direzioni unitarie n̂1, n̂2 e parametri energetici:

βi = Ei
Ep
, γi = 1√

1− β2
i

, ϕi = artanh(βi),

con tanh(ϕi) = βi, cosh(ϕi) = γi, sinh(ϕi) = γiβi.
Composizione dei boost.

Il prodotto di due boost planckiani è della forma:

BE(n̂2, ϕ2)BE(n̂1, ϕ1) = RW (Ω, k̂)BE(n̂12, ϕ12),

dove RW è la rotazione di Wigner di angolo Ω attorno all’asse
k̂ ∥ (n̂2 × n̂1), e BE(n̂12, ϕ12) è un boost equivalente lungo la
direzione risultante n̂12.

La direzione del boost risultante è:

n̂12 = β
∥
12n̂1 + β⊥

12

|β∥
12n̂1 + β⊥

12|
,

dove:

β
∥
2 = β2(n̂2 · n̂1), β⊥

2 = β2 (n̂2 − (n̂2 · n̂1)n̂1) .

La legge di composizione energetica risulta identica a quella
einsteiniana con la sostituzione v/c 7→ E/Ep:

β
∥
12 = β1 + β

∥
2

1 + β1β
∥
2
, β⊥

12 = β⊥
2

γ1(1 + β1β
∥
2)
.

Angolo di rotazione di Wigner.
L’asse di rotazione è:

k̂ = n̂2 × n̂1

|n̂2 × n̂1|
,

e l’angolo di rotazione Ω è determinato da:

tan
(Ω

2

)
k̂ = sinh(ϕ1/2) sinh(ϕ2/2)(n̂2 × n̂1)

cosh(ϕ1/2) cosh(ϕ2/2) + cos θ sinh(ϕ1/2) sinh(ϕ2/2) ,
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3.5 Algebra di Lie associata e isomorfismo con so(1, 3)

dove cos θ = n̂1 · n̂2.
In termini di γi, la stessa relazione diventa:

tan
(Ω

2

)
k̂ =

√
(γ1 − 1)(γ2 − 1)(n̂2 × n̂1)√

(γ1 + 1)(γ2 + 1) + cos θ
√

(γ1 − 1)(γ2 − 1)
.

Limite debole.
Per piccoli valori dei parametri (|βi| ≪ 1, ϕi ≈ βi), si ottiene lo

sviluppo al secondo ordine:

Ω k̂ ≈ 1
2 β1β2 (n̂2 × n̂1),

che mostra come l’angolo di Wigner emerga al secondo ordine in β,
in perfetta analogia con la Relatività Ristretta classica.
Proprietà di gruppo.

La presenza della rotazione di Wigner implica la non
commutatività dei boost planckiani:

BE(n̂2, ϕ2)BE(n̂1, ϕ1) ̸= BE(n̂1, ϕ1)BE(n̂2, ϕ2).

Il “difetto di commutatività” è compensato esattamente da una
rotazione, confermando che il gruppo delle trasformazioni planckiane
è isomorfo a SO(1, 3).
Interpretazione fisica.

La rotazione di Wigner rappresenta un effetto cinematico inevi-
tabile nella composizione di boost non collineari. Nella RRP essa
conserva tutte le proprietà note della Relatività Ristretta classica,
ma dipende dal rapporto energetico E/Ep. La sua presenza assicura
la coerenza interna del gruppo di simmetria e gioca un ruolo fon-
damentale nell’analisi delle trasformazioni di spin e delle proprietà
delle particelle ultra-energetiche.

3.5 Algebra di Lie associata e isomorfismo con so(1, 3)
La consistenza della Relatività Ristretta Planckiana (RRP) non è
garantita soltanto dall’invarianza dell’intervallo planckiano (§3.3),
ma anche dalla struttura algebrica dei generatori delle trasforma-
zioni. Analogamente alla Relatività Ristretta classica, le simmetrie
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3 Cinematica planckiana

fondamentali della RRP sono descritte dal gruppo di Lorentz, la cui
algebra di Lie è isomorfa a so(1, 3). In questa sezione dimostriamo
che i generatori delle rotazioni e dei boost energetici soddisfano
esattamente le stesse relazioni di commutazione.

Generatori delle rotazioni e dei boost energetici

Consideriamo lo spazio planckiano con coordinate quadridimensio-
nali:

Xµ = (cEt, x), µ = 0, 1, 2, 3.

I generatori delle rotazioni spaziali Ji e dei boost energetici Ki sono
definiti in analogia alla rappresentazione canonica del gruppo di
Lorentz:

(Ji)µν = i(δµi δjν − δ
µ
j δiν), (Ki)µν = i(δµ0 δiν + δµi δ0ν),

dove i, j = 1, 2, 3 e δµν è il delta di Kronecker.

Relazioni di commutazione

Calcoliamo i commutatori tra i generatori:
1. Tra rotazioni:

[Ji, Jj ] = i ϵijkJk.

2. Tra rotazioni e boost energetici:

[Ji, Kj ] = i ϵijkKk.

3. Tra boost energetici:

[Ki, Kj ] = −i ϵijkJk.

Queste tre relazioni sono identiche a quelle dell’algebra di Lie
del gruppo di Lorentz classico.
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Isomorfismo con so(1, 3)

Le relazioni di commutazione sopra riportate definiscono l’algebra
so(1, 3), che governa le simmetrie dello spazio di Minkowski. Ne
consegue che il gruppo delle trasformazioni della RRP, costruito a
partire dai boost energetici parametrizzati da βE = E/Ep e dalle
rotazioni spaziali ordinarie, è isomorfo al gruppo di Lorentz classico:

gRRP ∼= so(1, 3).

Osservazioni

• L’invarianza dell’intervallo planckiano (§3.3) e la struttura di
gruppo garantita da queste relazioni mostrano che la RRP è
matematicamente consistente e perfettamente integrata nella
cornice delle teorie di simmetria relativistiche.

• La sostituzione v/c 7→ E/Ep non altera l’algebra sottostante,
ma ne offre una nuova interpretazione fisica: i limiti cinematici
non riguardano la velocità, bensì l’energia.

• L’isomorfismo con so(1, 3) implica che la teoria può essere
trattata con gli stessi strumenti rappresentazionali usati in
teoria dei campi relativistici, inclusa la decomposizione in
rappresentazioni irriducibili (scalari, spinori e tensori).

4 Tempo proprio e clock planckiano

4.1 Separazione fra tempo geometrico e tempo fisico
Nella Relatività Ristretta di Einstein il tempo proprio τ è definito
a partire dall’intervallo minkowskiano:

dτ 2 = 1
c2 ds

2 = dt2 − 1
c2 dx⃗

2,

che rappresenta una quantità puramente geometrica, indipendente
dallo stato energetico del sistema.

Nella Relatività Ristretta Planckiana (RRP), invece, occorre
distinguere due nozioni di tempo:
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4 Tempo proprio e clock planckiano

1. Tempo proprio geometrico, definito dall’invariante planckiano
introdotto in §3.1:

dτ 2
geo = 1

c2
E

ds2
E = dt2 − 1

c2
E

dx⃗ 2,

dove cE è la costante di velocità che garantisce omogenei-
tà dimensionale. Questa definizione mantiene la struttura
lorentziana della cinematica.

2. Tempo proprio fisico, ovvero la misura effettiva scandita da un
“orologio planckiano”, che tiene conto della dipendenza ener-
getica del flusso temporale. Esso viene ottenuto introducendo
il fattore γE(E) definito in §3.2:

dτphys = γE(E) dτgeo, γE(E) = 1√
1−

(
E
Ep

)2
.

Dimostrazione della coerenza.
Partendo dall’intervallo planckiano:

s2
E = (cEt)2 − |x⃗|2,

si definisce come in RR il tempo proprio geometrico:

dτgeo = 1
cE

√
(cEdt)2 − dx⃗ 2.

Poiché tale quantità è invariante sotto i boost planckiani, es-
sa fornisce una misura universale indipendente dal sistema di
riferimento.

Tuttavia, per incorporare il postulato 2 della RRP, secondo cui
il tempo proprio dipende dall’energia totale E, si introduce una
correzione moltiplicativa tramite γE(E). La costruzione:

dτphys = γE(E) dτgeo

garantisce che:
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4.2 Accelerazione del tempo proprio per E → Ep

• per E ≪ Ep si ha γE ≈ 1 e dunque dτphys ≈ dτgeo,
recuperando il limite einsteiniano;

• per E → Ep, γE → ∞ e il tempo fisico diverge rispetto a
quello geometrico, introducendo l’effetto di accelerazione del
tempo proprio.

Interpretazione.
La separazione fra tempo geometrico e tempo fisico consente

di preservare la struttura matematica del gruppo di simmetria
(che resta isomorfo a SO(1, 3)) e, al contempo, di introdurre un
effetto dinamico nuovo, direttamente collegato all’energia. In questo
quadro, il tempo proprio non è soltanto una variabile geometrica
derivata dalla metrica, ma diventa una grandezza fisica dipendente
dal contenuto energetico del sistema considerato.

4.2 Accelerazione del tempo proprio per E → Ep

Un aspetto distintivo della Relatività Ristretta Planckiana (RRP) è
la predizione che il tempo proprio misurato da un sistema fisico non
rimane invariato al crescere dell’energia, ma subisce un’accelerazione
quando l’energia totale E si avvicina al limite universale Ep.
Definizione formale.

Dal postulato 2 (§2.2) il tempo proprio fisico è legato al tempo
geometrico dall’espressione:

dτphys = γE(E) dτgeo, γE(E) = 1√
1−

(
E
Ep

)2
.

Analisi dei limiti.

1. Per energie molto inferiori a quella di Planck:

E ≪ Ep ⇒ γE(E) ≈ 1,

e dunque:

dτphys ≈ dτgeo,

recuperando il comportamento della Relatività Ristretta di
Einstein.
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4 Tempo proprio e clock planckiano

2. Nel limite di energie prossime a Ep:

E → Ep ⇒ γE(E)→ +∞,

per cui il tempo fisico cresce indefinitamente rispetto al tem-
po geometrico. Si parla di accelerazione del tempo proprio,
fenomeno speculare alla dilatazione temporale della RR.

Dimostrazione esplicita.
Consideriamo un osservatore inerziale che misura il tempo pro-

prio di un sistema con energia E. L’integrale del tempo fisico lungo
una traiettoria è:

τphys =
∫
γE(E) dτgeo.

Se E rimane costante durante l’evoluzione, si ottiene:

τphys = γE(E) τgeo.

Pertanto, per un intervallo di tempo coordinato ∆t con moto
rettilineo uniforme (dx⃗ = 0):

∆τgeo = ∆t, ∆τphys = γE(E) ∆t.

Quindi, al crescere di E, l’intervallo di tempo proprio fisico registra-
to dal sistema aumenta più rapidamente dell’intervallo di tempo
coordinato. In particolare, al limite E → Ep:

∆τphys

∆t → +∞.

4.3 Interpretazione fisica e possibili osservabili
La separazione tra tempo geometrico e tempo fisico (§4.1) e l’acce-
lerazione del tempo proprio per E → Ep (§4.2) hanno conseguenze
profonde non soltanto concettuali, ma anche empiriche. In questa
sezione discutiamo l’interpretazione fisica di tali effetti e indivi-
duiamo alcuni possibili osservabili in grado di testare la Relatività
Ristretta Planckiana (RRP).
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4.3 Interpretazione fisica e possibili osservabili

Interpretazione fisica.
Nella Relatività Ristretta classica, il parametro fondamentale è la

velocità relativa v, limitata da c, e l’effetto principale è la dilatazione
temporale. Nella RRP, invece, il parametro fondamentale è l’energia
E limitata da Ep, e l’effetto principale è l’accelerazione del tempo
proprio.

Il parallelismo tra le due teorie è riassumibile come segue:

v

c
←→ E

Ep
, ∆t′ = γv∆t ←→ ∆τphys = γE(E)∆t.

Questa simmetria suggerisce che la struttura dello spazio-tempo-
energia obbedisca a principi di dualità: la costanza di c vincola le
trasformazioni cinematiche nello spazio-tempo, mentre l’invarianza
di Ep vincola le trasformazioni cinematiche nello spazio-energia.
Possibili osservabili.

1. Raggi cosmici ultra-energetici. Per energie dell’ordine E ∼
1020 eV, vicine ma non pari a Ep, la correzione introdotta
da γE potrebbe produrre deviazioni misurabili negli spettri
energetici osservati da esperimenti come Auger e Telescope
Array. In particolare, si prevede una modifica nella distribu-
zione angolare e nell’attenuazione del flusso sopra la soglia di
GZK.

2. Oscillatori naturali ad alta energia. Sistemi con frequen-
ze intrinseche ν prossime a νp =

√
c5/(ℏG) vedrebbero

un’accelerazione della frequenza osservata, con:

νobs = γE(E) νgeo,

il che porterebbe a uno shift misurabile rispetto alla previsione
relativistica classica.

3. Buchi neri e collassi gravitazionali. Nei processi di collasso ver-
so densità planckiane, il tempo fisico interno potrebbe accele-
rare rispetto a quello esterno, generando segnali gravitazionali
con frequenze modificate secondo:

fobs = fgeo

γE(Ecurv) .
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5 Dinamica estesa

Questa deviazione potrebbe essere testata con gli interfero-
metri gravitazionali di nuova generazione (Einstein Telescope,
Cosmic Explorer).

4. Cosmologia primordiale. Durante le epoche in cui l’energia
media per grado di libertà si avvicinava a Ep, la rapidissima
accelerazione del tempo proprio avrebbe potuto determinare
una fase di espansione ultra-veloce, alternativa o complemen-
tare all’inflazione. Ciò produrrebbe impronte osservabili nello
spettro delle anisotropie cosmiche della radiazione di fondo
(CMB).

Sintesi.
Gli osservabili proposti mostrano che la RRP non è soltanto

un costrutto matematico, ma fornisce predizioni fisiche concrete,
confrontabili con dati sperimentali e osservativi. L’identificazione
di firme univoche legate all’accelerazione del tempo proprio rap-
presenta la via maestra per testare e, se necessario, falsificare la
teoria.

5 Dinamica estesa

5.1 Estensione dell’azione di Einstein–Hilbert con
γE

Per estendere la dinamica gravitazionale alla Relatività Ristretta
Planckiana (RRP) si introduce una modifica all’azione di Ein-
stein–Hilbert, in modo da includere l’effetto del fattore planckiano
γE . L’idea di base è che l’energia effettiva di un sistema non si tradu-
ca integralmente come sorgente della curvatura, ma sia “attenuata”
da un peso dipendente da γE , definito come

γE(E) = 1√
1−

(
E
Ep

)2
, 0 ≤ E < Ep,

dove Ep è l’energia di Planck.
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5.1 Estensione dell’azione di Einstein–Hilbert con γE

Si definisce allora il peso planckiano della materia come

f(E) = 1
γE(E)2 = 1−

(
E

Ep

)2

.

L’azione totale della teoria assume la forma:

S = Sg + S(eff)
m ,

dove:

Sg = c3

16πG

∫
d4x
√
−g (R− 2Λ)

è il termine gravitazionale usuale di Einstein–Hilbert, e

S(eff)
m =

∫
d4x
√
−g f(E)Lm(g, ψ)

è il termine di materia “ponderato” dal fattore f(E).
In questa formulazione, Lm rappresenta la lagrangiana canoni-

ca della materia, mentre f(E) modula la sua capacità di genera-
re curvatura. Si recupera così, al livello variazionale, un tensore
energia–impulso efficace del tipo:

T (eff)
µν = f(E)Tµν .

Osserviamo che, nel limite E ≪ Ep, si ha f(E)→ 1, quindi:

T (eff)
µν → Tµν ,

e l’azione totale si riduce a quella della Relatività Generale standard.
Questa scelta è coerente con i postulati della RRP: il limite supe-

riore di energia Ep si traduce, a livello dinamico, in un’attenuazione
progressiva delle sorgenti di curvatura man mano che l’energia si
avvicina a Ep. In particolare, per E → Ep si ha f(E)→ 0, e la ma-
teria non contribuisce più alla curvatura, evitando così divergenze
e singolarità.

In sintesi, l’estensione dell’azione di Einstein–Hilbert con il
fattore γE realizza un meccanismo di “protezione planckiana” della
dinamica gravitazionale, assicurando la continuità con la teoria di
Einstein a basse energie e introducendo nuove proprietà nel regime
ultra-energetico.
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5 Dinamica estesa

5.2 Derivazione variazionale: equazioni di campo
modificate

A partire dall’azione estesa introdotta nella sezione precedente,

S = c3

16πG

∫
d4x
√
−g (R− 2Λ) +

∫
d4x
√
−g f(E)Lm(g, ψ),

con

f(E) = 1
γ2
E

= 1−
(
E

Ep

)2

, γE(E) = 1√
1−

(
E
Ep

)2
,

si ottengono le equazioni di campo modificate tramite variazione
rispetto alla metrica gµν .
Variazione del termine gravitazionale.

δSg = c3

16πG

∫
d4x
√
−g (Gµν + Λgµν) δgµν .

Variazione del termine di materia. Il termine di materia esteso
è

S(eff)
m =

∫
d4x
√
−g f(E)Lm(g, ψ).

La sua variazione è

δS(eff)
m = 1

2

∫
d4x
√
−g f(E)Tµν δgµν ,

dove

Tµν = − 2√
−g

δ

δgµν

(∫
d4x
√
−gLm

)
è il tensore energia–impulso canonico della materia.

Poiché f(E) non dipende esplicitamente da gµν , esso esce dalla
variazione come fattore moltiplicativo.
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5.3 Conservazione, identità di Bianchi e consistenza matematica

Equazioni di campo. Richiedendo δS = 0 per variazioni arbitrarie
di gµν , si ottiene:

Gµν + Λgµν = 8πG
c4 f(E)Tµν .

Introducendo il tensore energia–impulso efficace,

T (eff)
µν = f(E)Tµν = 1

γ2
E

Tµν ,

le equazioni assumono la forma compatta:

Gµν + Λgµν = 8πG
c4 T (eff)

µν .

Discussione. Il risultato mostra che la curvatura spazio-temporale
non è più proporzionale direttamente all’energia della materia, ma a
una versione “attenuata” da f(E). Questo garantisce che, per E ≪
Ep, si recuperi il limite della Relatività Generale ordinaria, mentre
per E → Ep il contributo della materia si annulli progressivamente,
prevenendo divergenze nella curvatura.

La derivazione variazionale dimostra quindi che l’invarianza
dell’energia di Planck si riflette in una modifica diretta delle equa-
zioni di Einstein, senza alterare la struttura geometrica di base ma
modificando il ruolo dinamico della sorgente di curvatura.

5.3 Conservazione, identità di Bianchi e consistenza
matematica

Un requisito fondamentale di ogni estensione coerente della Re-
latività Generale è la compatibilità con l’identità di Bianchi, che
assicura la consistenza matematica delle equazioni di campo e la
conservazione dell’energia-impulso. Nella Relatività Ristretta Planc-
kiana (RRP), la presenza del fattore di attenuazione energetica
γE modifica il tensore energia-impulso, ma la struttura geometrica
rimane vincolata dalle proprietà differenziali del tensore di Einstein.
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5 Dinamica estesa

Identità di Bianchi

Per la curvatura riemanniana vale l’identità differenziale:

∇µGµν = 0,

dove Gµν = Rµν − 1
2gµνR è il tensore di Einstein. Questa identi-

tà, puramente geometrica, non dipende dalla scelta della materia
sorgente e garantisce la coerenza formale delle equazioni di campo.

Equazioni di campo RRP

Le equazioni di campo nella formulazione planckiana sono:

Gµν + Λgµν = 8πG
c4 T (eff)

µν ,

con

T (eff)
µν = 1

γ2
E

Tµν ,

dove Tµν è il tensore energia-impulso ordinario della materia. La
funzione di attenuazione è definita come:

γE(E) = 1√
1−

(
E
Ep

)2
, 0 ≤ E < Ep.

Compatibilità con l’identità di Bianchi

Applicando la derivata covariante all’equazione di campo, si ottiene:

∇µ (Gµν + Λgµν) = 8πG
c4 ∇

µT (eff)
µν .

Poiché ∇µGµν = 0 e ∇µgµν = 0, segue:

∇µT (eff)
µν = 0.

Questo vincolo è soddisfatto se γE è costante. In tale caso,
l’energia-impulso effettiva si conserva esattamente, analogamente
alla Relatività Generale.
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5.3 Conservazione, identità di Bianchi e consistenza matematica

Caso con γE = γE(x) variabile

Se il fattore planckiano dipende dalle coordinate spazio-temporali,
γE = γE(x), il calcolo produce:

∇µT (eff)
µν = −Tµν ∇µ

(
ln γ2

E

)
.

Appare quindi una sorgente di scambio:

Qν = Tµν∇µ
(
ln γ2

E

)
,

che rappresenta un trasferimento di energia e quantità di moto tra
il settore della materia e quello del campo planckiano associato a
γE . La conservazione totale del sistema rimane comunque garantita,
poiché la corrente Qν è interpretata come contributo del settore
geometrico-energetico.

Consistenza matematica

La formulazione planckiana è matematicamente consistente in
quanto:

• per γE = const. si recupera la conservazione standard
∇µTµν = 0 e dunque la Relatività Generale;

• per γE = γE(x) la violazione apparente della conservazione
in T

(eff)
µν è bilanciata dall’introduzione di Qν , garantendo la

chiusura delle equazioni di campo;

• l’identità di Bianchi rimane valida, poiché è una proprietà
geometrica indipendente dalle modifiche introdotte.

Osservazione conclusiva

La struttura differenziale delle equazioni di Einstein viene pre-
servata integralmente. L’unica novità introdotta dalla RRP è la
modulazione energetica del tensore materia, che agisce come pe-
so dinamico e garantisce l’assenza di divergenze ultraviolette per
E → Ep, mantenendo intatta la consistenza matematica globale
del sistema.
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5 Dinamica estesa

5.4 Tensore energia-impulso efficace
Un aspetto cruciale della Relatività Ristretta Planckiana (RRP) è la
ridefinizione del tensore energia-impulso, che incorpora il fattore di
attenuazione energetica γE . Questa modifica assicura che, al crescere
dell’energia verso la scala di Planck Ep, l’effetto gravitazionale della
materia non diverga, preservando la consistenza matematica e fisica
della teoria.

Definizione

Si parte dal tensore energia-impulso standard della materia:

Tµν = 2√
−g

δSm
δgµν

,

dove Sm è l’azione della materia. Nella RRP si introduce una
correzione universale legata al fattore planckiano:

T (eff)
µν = 1

γ2
E

Tµν ,

con

γE(E) = 1√
1−

(
E
Ep

)2
, 0 ≤ E < Ep.

Questo implica che l’effetto gravitazionale di una sorgente di energia-
impulso è ridotto di un fattore 1/γ2

E .

Derivazione variazionale

L’azione totale comprende il termine gravitazionale e quello della
materia “ponderata”:

S = c3

16πG

∫
d4x
√
−g (R− 2Λ) +

∫
d4x
√
−g 1

γ2
E

Lm.

Variando rispetto alla metrica gµν , si ottiene:

T (eff)
µν = 2√

−g
δS

(eff)
m

δgµν
= 1
γ2
E

Tµν ,

54



5.4 Tensore energia-impulso efficace

dove S(eff)
m è l’azione di materia modificata.

Equazioni di campo

Le equazioni di Einstein assumono la forma:

Gµν + Λgµν = 8πG
c4 T (eff)

µν = 8πG
c4γ2

E

Tµν .

Il contributo della materia è quindi modulato da γE , che dipende
dallo stato energetico considerato. Nel limite E ≪ Ep si recupera
la Relatività Generale ordinaria.

Proprietà di conservazione

Dall’identità di Bianchi segue:

∇µT (eff)
µν = 0.

Se γE = const., la conservazione coincide con quella standard:

∇µTµν = 0.

Se invece γE = γE(x) varia nello spaziotempo, si introduce un
termine di scambio:

∇µT (eff)
µν = −Tµν∇µ

(
ln γ2

E

)
,

che descrive un trasferimento di energia-impulso con il settore
planckiano, mantenendo comunque la conservazione totale del
sistema.

Interpretazione fisica

Il tensore energia-impulso efficace rappresenta il “peso gravi-
tazionale” della materia in presenza della scala di Planck. In
particolare:

• per E ≪ Ep, T (eff)
µν ≈ Tµν , e la dinamica coincide con la

Relatività Generale;

• per E → Ep, T (eff)
µν → 0, e la sorgente perde la capacità di

generare curvatura infinita, evitando singolarità.

55



6 Soluzioni fisiche

Esempi applicativi

1. Cosmologia FLRW: l’energia e la pressione efficaci sono:

ρeff = ρ

γ2
E

, peff = p

γ2
E

,

portando alle equazioni di Friedmann modificate.

2. Buchi neri: la massa efficace risulta:

Meff = M

γ2
E

,

e l’orizzonte di Schwarzschild si riduce a:

r(eff)
s = 2GMeff

c2 .

Consistenza matematica

La definizione di T (eff)
µν preserva:

• la simmetria e la forma tensoriale del tensore energia-impulso;

• la compatibilità con l’identità di Bianchi;

• la riduzione corretta alla Relatività Generale per basse energie.

Conclusione

Il tensore energia-impulso efficace costituisce la chiave dinamica
della RRP: introduce una regolarizzazione naturale delle sorgenti
gravitazionali senza rompere la struttura matematica della teoria,
fornendo un meccanismo concreto per la risoluzione delle singolarità
cosmiche e dei buchi neri.

6 Soluzioni fisiche

6.1 Recupero del limite GR per E ≪ Ep

Un requisito fondamentale di qualsiasi estensione della Relatività
Generale (RG) è il principio di riduzione, ossia la garanzia che nel
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6.1 Recupero del limite GR per E ≪ Ep

limite di basse energie le nuove equazioni si riducano a quelle clas-
siche di Einstein. Nel quadro della Relatività Ristretta Planckiana
(RRP), questo principio si realizza attraverso il comportamento del
fattore planckiano:

γE(E) = 1√
1−

(
E
Ep

)2
,

dove Ep =
√
ℏc5/G è l’energia di Planck.

Espansione perturbativa per E ≪ Ep. Per energie molto
inferiori a Ep si ha ϵ = E/Ep ≪ 1, e l’espansione di γE fornisce:

γE(ϵ) = 1 + 1
2ϵ

2 + 3
8ϵ

4 +O(ϵ6).

Ne consegue che:

1
γ2
E

= 1− ϵ2 +O(ϵ4).

Questa relazione mostra che la correzione planckiana al tensore
energia-impulso è trascurabile nel limite ϵ→ 0, e il formalismo si
riduce alla RG classica.

Equazioni di campo. Nella RRP le equazioni di Einstein
modificate assumono la forma:

Gµν + Λgµν = 8πG
c4 T (eff)

µν , T (eff)
µν = 1

γ2
E

Tµν .

Per E ≪ Ep, γE ≈ 1, e si recuperano le equazioni classiche:

Gµν + Λgµν = 8πG
c4 Tµν .
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6 Soluzioni fisiche

Soluzioni cosmologiche. Nel caso della metrica FLRW, le
equazioni di Friedmann modificate sono:

H2 = 8πG
3

ρ

γ2
E

− kc2

a2 + Λc2

3 ,

ä

a
= −4πG

3
ρ+ 3p/c2

γ2
E

+ Λc2

3 .

Per γE → 1, queste si riducono esattamente alle equazioni
cosmologiche standard di Einstein–Friedmann.

Soluzioni statiche sferiche. Per una distribuzione sferica di
massa M , la massa efficace nella RRP è:

Meff = M

γ2
E

.

Nel limite E ≪ Ep, si ha Meff ≈ M , e la metrica Schwarzschild
planckiana:

ds2 =
(

1− 2GMeff

c2r

)
c2dt2 −

(
1− 2GMeff

c2r

)−1
dr2 − r2dΩ2

si riduce alla metrica di Schwarzschild classica.

Consistenza matematica. Il recupero del limite GR garantisce
che:

• la teoria RRP sia localmente indistinguibile dalla RG per
energie sub-planckiane;

• siano rispettati i test classici della RG (precessione del perielio,
deflessione della luce, onde gravitazionali);

• la RRP si ponga come estensione coerente e regolare, senza
contraddire i risultati sperimentali consolidati.

Pertanto, il limite E ≪ Ep rappresenta una verifica cruciale di
consistenza, assicurando che la Relatività Ristretta Planckiana si
riduca al paradigma einsteiniano nel dominio già osservato.
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6.2 Cosmologia planckiana: Big Bounce e scenari
inflazionari modificati

Uno degli ambiti più significativi in cui la Relatività Ristretta
Planckiana (RRP) produce effetti è la cosmologia primordiale. Le
modifiche introdotte al tensore energia–impulso e alle equazioni di
Friedmann conducono infatti a scenari in cui la singolarità iniziale
del Big Bang viene sostituita da un Big Bounce, e i meccanismi
inflazionari standard vengono riformulati in termini planckiani.

Equazioni di Friedmann modificate. A partire dalle equazioni
di campo planckiane:

Gµν + Λgµν = 8πG
c4 T (eff)

µν , T (eff)
µν = 1

γ2
E

Tµν ,

si ricavano le equazioni di Friedmann per un universo FLRW:

H2 = 8πG
3

ρ

γ2
E

− kc2

a2 + Λc2

3 ,

ä

a
= −4πG

3
ρ+ 3p/c2

γ2
E

+ Λc2

3 .

Regime ad alta energia e rimozione della singolarità. Nel
limite E → Ep, il fattore planckiano diverge:

γE(E) = 1√
1− (E/Ep)2

−→ +∞.

Di conseguenza, i termini con ρ e p nelle equazioni cosmologiche
vengono attenuati:

ρ

γ2
E

→ ρeff ≪ ρ.
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Questo implica che, anche se ρ cresce verso densità planckia-
ne, il contributo gravitazionale effettivo si satura. In particolare,
l’equazione:

H2 = 8πG
3

ρ

γ2
E

+ . . .

non diverge mai, e ammette un minimo amin > 0 per il fattore di
scala. Questo corrisponde a un rimbalzo cosmico (Big Bounce), in
cui la contrazione dell’universo viene arrestata e sostituita da una
fase di espansione regolare.

Dinamica del Big Bounce. Per un fluido dominato da energia
di radiazione (p = ρc2/3), si ottiene:

ä

a
= −8πG

3
ρ

γ2
E

+ Λc2

3 .

Nel limite ρ→ ρp ∼ E4
p/(ℏc)3, il termine (ρ/γ2

E) tende a un valore
finito, impedendo la divergenza di ä/a e assicurando che a(t) non si
annulli mai. La soluzione cosmologica ammette dunque un rimbalzo
regolare.

Scenari inflazionari modificati. Nel contesto inflazionario stan-
dard, l’espansione accelerata è guidata da un campo scalare ϕ con
potenziale V (ϕ). Nella RRP, l’energia efficace del campo è:

ρeff (ϕ) = 1
γ2
E

(1
2 ϕ̇

2 + V (ϕ)
)
.

L’equazione di Friedmann diventa:

H2 = 8πG
3 ρeff (ϕ).

Per ϕ̇2 ≪ V (ϕ) si ha inflazione, ma con un tasso di espansione
ridotto rispetto al caso standard a causa del fattore 1/γ2

E . Questo
comporta:

• un numero di e-folds dipendente dall’energia planckiana locale;
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6.3 Buchi neri regolari e attenuazione delle singolarità

• una possibile riduzione della durata dell’inflazione;

• modifiche agli spettri delle perturbazioni primordiali, con
deviazioni testabili.

Predizioni osservabili. Le principali conseguenze cosmologiche
sono:

1. Rimbalzo regolare: assenza di singolarità iniziale, con
amin > 0;

2. Inflazione attenuata: lo scenario inflazionario persiste ma
con dinamica modificata dal fattore planckiano;

3. Spettri cosmologici: deviazioni nei parametri spettrali ns e
r, legate a correzioni planckiane.

Conclusione. La cosmologia planckiana fornisce un’alternativa
coerente al Big Bang singolare, introducendo un Big Bounce regolare
e una fase inflazionaria modificata. Questo quadro apre la strada a
predizioni testabili tramite osservazioni cosmologiche di precisione,
come le anisotropie del fondo cosmico a microonde e lo spettro delle
onde gravitazionali primordiali.

6.3 Buchi neri regolari e attenuazione delle
singolarità

La Relatività Ristretta Planckiana (RRP) introduce una modifi-
ca fondamentale alle sorgenti gravitazionali attraverso il tensore
energia–impulso efficace:

T (eff)
µν = 1

γ2
E

Tµν , γE(E) = 1√
1− (E/Ep)2

,

che comporta un’attenuazione del contributo energetico nelle equa-
zioni di campo di Einstein. Questo meccanismo ha implicazioni
profonde sulla struttura interna dei buchi neri e sulla rimozione
delle singolarità.
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Massa efficace e soluzione di Schwarzschild planckiana.
Consideriamo una sorgente sfericamente simmetrica con massa M .
Nella RRP, la massa gravitante percepita dallo spaziotempo esterno
è ridotta a:

Meff = M

γ2
E

.

La metrica esterna assume la forma:

ds2 =
(

1− 2GMeff

c2r

)
c2dt2 −

(
1− 2GMeff

c2r

)−1
dr2 − r2dΩ2.

Il raggio di Schwarzschild efficace è quindi:

r(eff)
s = 2GMeff

c2 = 1
γ2
E

2GM
c2 .

Comportamento planckiano. Nel limite E ≪ Ep si ha γE ≈ 1
e Meff ≈M : si recupera la soluzione classica di Schwarzschild. Nel
regime opposto, quando E → Ep, il fattore γE →∞, quindi:

Meff → 0, r(eff)
s → 0.

Questo implica che la formazione di un orizzonte si arresta per
masse prossime alla scala di Planck, e la singolarità centrale viene
eliminata in quanto il campo gravitazionale si attenua oltre la soglia
planckiana.

Soluzioni regolari e confronto con modelli noti. L’effetto
della RRP è concettualmente analogo a quello dei modelli di buchi
neri regolari (Bardeen, Hayward, Dymnikova), in cui il tensore
energia–impulso viene modificato da campi quantistici o semiclassici
per eliminare la singolarità. Qui, tuttavia, la regolarità emerge da
una legge universale di attenuazione:

T (eff)
µν = Tµν

γ2
E

,

che agisce in maniera covariante e indipendente dal tipo di materia
sorgente. La divergenza dell’energia interna a r → 0 viene soppressa
dalla crescita illimitata di γE , che compensa l’aumento di densità.
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Estensione a Kerr e rotazione. Per un buco nero rotante, la
soluzione di Kerr con parametri (M,J) viene modificata sostituendo
M →Meff . Il parametro di spin diventa:

aeff = J

Meffc
,

che cresce all’aumentare di γE , portando a un indebolimento della
curvatura interna e a una dilatazione delle superfici caratteristiche
(ergosfera, orizzonti interni ed esterni). Anche in questo caso, nel
limite planckiano, l’orizzonte tende a dissolversi.

Attenuazione delle singolarità. Il tensore di Einstein:

Gµν = 8πG
c4 T (eff)

µν ,

non diverge mai in quanto T (eff)
µν è limitato dal fattore 1/γ2

E . Per
densità ρ→ ρp ∼ E4

p/(ℏc)3, il termine effettivo ρeff = ρ/γ2
E rimane

finito, impedendo che le invarianti scalari di curvatura (R, RµνRµν ,
RµνρσR

µνρσ) divergano al centro. In tal modo, la geometria risulta
regolare e priva di singolarità.

Implicazioni fisiche. Le principali conseguenze della regolariz-
zazione planckiana dei buchi neri sono:

1. Assenza di singolarità centrale: la densità e la curvatura
rimangono finite anche a r → 0;

2. Orizzonti modificati: il raggio di Schwarzschild e le superfici
caratteristiche sono ridotti da un fattore 1/γ2

E ;

3. Limite planckiano: al raggiungimento di energie vicine a
Ep, l’orizzonte collassa e il buco nero si dissolve in uno stato
regolare;

4. Stabilità teorica: il meccanismo è intrinsecamente covariante
e non richiede ipotesi ad hoc sulla materia sorgente.
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6 Soluzioni fisiche

Conclusione. La Relatività Ristretta Planckiana fornisce un qua-
dro coerente per la costruzione di buchi neri regolari, in cui le
singolarità vengono sostituite da configurazioni geometriche finite
grazie al ruolo regolatore del fattore γE . Questa attenuazione univer-
sale delle sorgenti rappresenta una predizione distintiva della teoria
e apre la strada a scenari di gravità regolare verificabili tramite
osservazioni astrofisiche ad alta energia.

6.4 Onde gravitazionali ad alta energia
Uno degli ambiti più promettenti per testare sperimentalmente la
Relatività Ristretta Planckiana (RRP) riguarda la propagazione
delle onde gravitazionali in regimi energetici prossimi alla sca-
la di Planck. In questo contesto, la correzione planckiana agisce
attraverso il tensore energia–impulso efficace:

T (eff)
µν = 1

γ2
E

Tµν , γE(E) = 1√
1− (E/Ep)2

,

che modifica la sorgente nelle equazioni di Einstein lineari.

Gravità linearizzata. Consideriamo la decomposizione pertur-
bativa della metrica:

gµν = ηµν + hµν , |hµν | ≪ 1,

dove ηµν è la metrica di Minkowski. Introducendo la traccia inversa:

h̄µν = hµν − 1
2ηµνh, h = ηµνhµν ,

e imponendo la gauge di Lorenz:

∂µh̄µν = 0,

le equazioni di campo modificate assumono la forma:

□h̄µν = −16πG
c4 T (eff)

µν = −16πG
c4γ2

E

Tµν .
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6.4 Onde gravitazionali ad alta energia

Propagazione nel vuoto. In assenza di sorgenti (Tµν = 0),
l’equazione resta:

□h̄µν = 0,

con soluzioni piane del tipo:

h̄µν(x) = ℜ
{
Aµνe

i(kαxα)
}
,

dove kαkα = 0 e Aµν soddisfa le condizioni di gauge. Pertanto, le
onde gravitazionali continuano a propagarsi alla velocità della luce
c, senza violazioni della causalità.

Effetto planckiano sulle sorgenti. La differenza sostanziale
risiede nella riduzione dell’ampiezza prodotta dalle sorgenti ultra-
energetiche. In un evento astrofisico caratterizzato da energia E, il
tensore energia–impulso effettivo risulta ridotto da un fattore 1/γ2

E .
L’ampiezza osservata per un’onda gravitazionale è quindi:

hobs ∝
1
γ2
E

hGR,

dove hGR è l’ampiezza prevista dalla Relatività Generale. Nel limite
E ≪ Ep si recupera hobs ≈ hGR, mentre per E → Ep l’emissione
gravitazionale viene soppressa.

Frequenza massima osservabile. Il legame tra energia carat-
teristica della sorgente e frequenza dell’onda prodotta implica che
esiste una frequenza limite:

fobs(E) = fmax
γE(E) ,

dove fmax rappresenta la massima frequenza associata alla dinamica
classica della sorgente. Per energie prossime a Ep, γE → ∞ e
fobs → 0, indicando che oscillazioni ad altissima frequenza vengono
“congelate” dal meccanismo planckiano.
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7 Verificabilità e testabilità

Polarizzazioni e struttura del gruppo. La struttura di grup-
po rimane isomorfa a SO(1, 3): le due polarizzazioni fondamentali
(+, ×) delle onde gravitazionali non vengono alterate. Tuttavia, la
rotazione di Wigner associata alla composizione di boost energetici
suggerisce che sorgenti non collineari ad alta energia possano gene-
rare effetti di mixing tra polarizzazioni, misurabili come rotazioni
anomale del piano di polarizzazione.

Predizioni sperimentali. Le principali conseguenze osservabili
della RRP sulle onde gravitazionali sono:

1. Soppressione delle ampiezze per eventi di energia ultra-
alta (E ∼ 1019 GeV);

2. Limite superiore alle frequenze osservabili, con cut-off
dinamico regolato da E/Ep;

3. Possibili rotazioni di polarizzazione in eventi multi-
sorgente non collineari, derivanti da effetti di Wigner
planckiani.

Osservazioni future. Gli interferometri gravitazionali di prossi-
ma generazione (LISA, Cosmic Explorer, Einstein Telescope) e le
osservazioni indirette tramite segnali cosmologici (CMB B-modes,
background stocastico) forniranno test cruciali per verificare l’atte-
nuazione planckiana prevista dalla teoria. In particolare, la mancata
osservazione di onde gravitazionali sopra una certa soglia energetica
costituirebbe un chiaro indizio a favore della Relatività Ristretta
Planckiana.

7 Verificabilità e testabilità

7.1 Consistenza teorica
La Relatività Ristretta Planckiana (RRP) introduce una modifica
strutturale alle trasformazioni di Lorentz sostituendo il rapporto
velocistico v

c con il rapporto energetico E
Ep

, dove Ep è l’energia
di Planck. La consistenza teorica della formulazione deve essere
verificata su più livelli: chiusura matematica, recupero dei limiti
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7.1 Consistenza teorica

noti, compatibilità con i principi di causalità e invarianza, assenza
di paradossi cinematici e stabilità delle equazioni di campo.

Invarianza dell’intervallo planckiano.
La RRP si fonda sulla definizione di un intervallo invariante:

s2
E = (cEt)2 − |x⃗|2,

il quale deve rimanere costante sotto trasformazioni di boost energe-
tico BE(βE) con parametro βE = E/Ep. La verifica esplicita segue
dalle proprietà delle matrici di boost:

BT
E η BE = η,

dove η = diag(1,−1,−1,−1) è la metrica di Minkowski. Ne conse-
gue che lo spazio-tempo planckiano mantiene lo stesso gruppo di
isometrie SO(1, 3) della Relatività Ristretta classica, con la sola
differenza che la parametrizzazione avviene in termini energetici
anziché velocistici.

Chiusura del gruppo e rapidità energetica.
Definendo la rapidità energetica ϕE come

tanhϕE = βE ,

si ottiene che le trasformazioni planckiane si compongono
linearmente:

BE(ϕ2)BE(ϕ1) = BE(ϕ1 + ϕ2).

Questo dimostra la chiusura del gruppo e l’associatività delle tra-
sformazioni, garantendo che la struttura algebrica è identica a quella
della Relatività Ristretta, con sostituzione v

c →
E
Ep

.

Compatibilità con le identità di Bianchi.
Nel regime dinamico, le equazioni di campo modificate assumono

la forma:

Gµν + Λgµν = 8πG
c4 T (eff)

µν , T (eff)
µν = 1

γ2
E

Tµν ,
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7 Verificabilità e testabilità

dove γE =
(
1− β2

E

)−1/2. La contrazione delle identità di Bianchi
implica:

∇µGµν = 0,
da cui segue la conservazione effettiva:

∇µT (eff)
µν = 0.

Pertanto, la struttura variazionale della teoria è coerente e non
genera violazioni della conservazione del 4-impulso.

Recupero dei limiti noti.
Il limite di bassa energia (E ≪ Ep) produce:

γE ≃ 1 ⇒ T (eff)
µν ≃ Tµν ,

per cui la teoria si riduce esattamente alla Relatività Generale
classica. Analogamente, nel settore cinematico:

βE → 0 ⇒ BE → I,

recuperando la cinematica newtoniana. Questo garantisce la
compatibilità con i limiti osservativi già testati.

Causalità e assenza di paradossi.
La condizione |βE | < 1 assicura che E < Ep, in perfetta analogia

con |v| < c nella Relatività Ristretta. Questo vincolo impedisce il
superamento dell’energia di Planck e previene la comparsa di inter-
valli temporali chiusi o di paradossi di tipo tachionico. L’invarianza
dell’intervallo planckiano preserva quindi la causalità in tutte le
trasformazioni.

Conclusione.
La RRP è internamente consistente: la sua formulazione con-

serva l’invarianza di gruppo, rispetta la conservazione del tensore
energia–impulso attraverso le identità di Bianchi, recupera i limiti
classici già verificati sperimentalmente e non introduce violazioni di
causalità. Questa solidità matematica ne giustifica lo studio come
estensione simmetrica della Relatività Ristretta di Einstein verso il
regime planckiano.
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7.1 Consistenza teorica

7.1.1 Limite newtoniano e post-newtoniano (test PPN)

Un criterio essenziale per la consistenza della Relatività Ristretta
Planckiana (RRP) è la capacità di recuperare, nei limiti appropriati,
sia la dinamica newtoniana che le correzioni post–newtoniane, le
quali sono state confermate con estrema precisione in diversi test
sperimentali. In questa sezione sviluppiamo in modo sistematico il
limite a bassa energia e bassa velocità, e analizziamo le correzioni
previste in termini di parametri post–newtoniani (PPN).

Energia e massa efficace.
L’energia totale di una particella in RRP si scrive come

H = meff γvc
2, meff = mγE ,

dove γv = (1− v2/c2)−1/2 è il fattore di Lorentz standard e γE =
(1− (E/Ep)2)−1/2 è il fattore planckiano. La combinazione produce
una massa efficace:

meff = m

(
1 + 1

2

(
E
Ep

)2
+ 3

8

(
E
Ep

)4
+ · · ·

)
,

che riduce a m per E ≪ Ep.
Espansione newtoniana.
Per basse velocità (v ≪ c) e basse energie (E ≪ Ep), l’energia

si espande come

H ≃ meffc
2 + |p⃗|2

2meff
− |p⃗|4

8m3
effc

2 +O(v6/c6).

Il primo termine meffc
2 corrisponde all’energia di riposo modifica-

ta, il secondo all’energia cinetica newtoniana con massa efficace,
mentre i termini successivi forniscono correzioni relativistiche e
post–newtoniane.

Limite newtoniano nelle equazioni di campo.
Le equazioni di campo modificate assumono la forma

Gµν + Λgµν = 8πG
c4 T (eff)

µν , T (eff)
µν = 1

γ2
E

Tµν .
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7 Verificabilità e testabilità

Nell’approssimazione debole, con potenziale gravitazionale Φ≪ c2,
il campo gravitazionale obbedisce a

∇2Φ = 4πGρeff , ρeff = ρ

γ2
E

.

Poiché γE ≃ 1 per E ≪ Ep, si recupera esattamente l’equazione di
Poisson della gravitazione newtoniana.

Sviluppo post–newtoniano.
Il formalismo PPN (Parametrized Post–Newtonian) consen-

te di confrontare la teoria con gli esperimenti solari e astrofisici.
Espandendo la metrica attorno a Minkowski,

gµν = ηµν + hµν , |hµν | ≪ 1,

la RRP produce modifiche nel termine sorgente attraverso ρeff e
peff . In particolare, la metrica statica sferica si scrive

ds2 =
(

1 + 2 Φ
c2 + 2βΦ2

c4 + · · ·
)
c2dt2 −

(
1− 2γ Φ

c2 + · · ·
)
dx⃗2,

dove i parametri PPN γ e β sono modificati dalla dipendenza da
γE . Esplicitamente:

γ − 1 ≃ − 2α2
0

1 + α2
0
, β − 1 ≃ 1

2α
2
0β0,

con

α0 = 1
2
f ′(ϵ0)
f(ϵ0) , f(ϵ) = 1

γE(ϵ)2 , ϵ = E

Ep
.

Compatibilità con i test sperimentali.
I vincoli osservativi più stringenti provengono da:

• deflessione della luce e ritardo di Shapiro (vincoli su γ − 1 <
10−5);

• precessione del perielio di Mercurio (vincoli su β − 1 < 10−4);
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7.1 Consistenza teorica

• esperimenti di Lunar Laser Ranging e missioni satellitari come
Cassini.

Affinché la RRP sia compatibile con questi dati, è necessario che
ϵ = E/Ep ≪ 1 in tutti i processi astrofisici osservabili, condizione
che risulta ampiamente soddisfatta. Di conseguenza, la teoria recu-
pera i valori PPN standard con correzioni trascurabili nei regimi
attualmente accessibili.

Conclusione.
La RRP risulta verificabile attraverso i test post–newtoniani:

essa recupera la meccanica newtoniana nel limite di bassa energia
e riproduce con grande precisione i parametri PPN osservati. Le
correzioni emergono solo per energie comparabili con Ep, regime an-
cora non accessibile sperimentalmente ma potenzialmente rilevante
per cosmologia primordiale e astrofisica ad altissime energie.

7.1.2 Stabilità dinamica e perturbazioni lineari

Un criterio fondamentale per la consistenza della Relatività Ristret-
ta Planckiana (RRP) è la stabilità delle soluzioni dinamiche e la
propagazione delle perturbazioni lineari. In questa sezione analizzia-
mo le condizioni necessarie per garantire che la teoria non presenti
instabilità di tipo ghost o tachionico, e sviluppiamo le equazioni di
perturbazione attorno a soluzioni di background di interesse fisico
(spaziotempo piatto e cosmologia FLRW).

Equazioni di campo e campo planckiano.
Nella formulazione variazionale estesa, l’azione totale comprende

un campo scalare ϵ(x) che regola il fattore planckiano:

γE(ϵ) = 1√
1− ϵ2

, f(ϵ) = 1
γ2
E

= 1− ϵ2, 0 ≤ ϵ < 1.

L’azione del campo planckiano è data da:

Sϵ =
∫
d4x
√
−g

[
−κ2 g

µν(∇µϵ)(∇νϵ)− U(ϵ)
]
,

dove κ > 0 garantisce una cinetica ben definita e U(ϵ) è un
potenziale regolare con U ′′(ϵ0) ≥ 0.
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7 Verificabilità e testabilità

Le equazioni di Einstein modificate diventano:

Gµν + Λgµν = 8πG
c4

[
T (ϵ)
µν + f(ϵ)T (m)

µν

]
,

con

T (ϵ)
µν = κ∇µϵ∇νϵ− gµν

(
κ

2 (∇ϵ)2 + U(ϵ)
)
.

Perturbazioni attorno a Minkowski.
Consideriamo il background piatto gµν = ηµν e ϵ = ϵ0 = cost.

Le perturbazioni metriche si scrivono come

gµν = ηµν + hµν , |hµν | ≪ 1,

mentre il campo planckiano è perturbato come

ϵ(x) = ϵ0 + δϵ(x), |δϵ| ≪ 1.

L’azione quadraticamente espansa per δϵ è:

S(2)
ϵ =

∫
d4x

[
−κ2 ∂µ(δϵ) ∂µ(δϵ)− 1

2m
2
ϵ (δϵ)2

]
,

dove

m2
ϵ = U ′′(ϵ0).

L’equazione delle perturbazioni scalari risulta

□ δϵ+m2
ϵ δϵ = 0,

ovvero un’equazione di Klein–Gordon libera, ben posta se κ > 0 e
m2
ϵ ≥ 0.
Condizioni di stabilità.
La stabilità lineare richiede:

1. Nessun ghost: κ > 0 assicura segno corretto della parte
cinetica.
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2. Nessun tachione: m2
ϵ = U ′′(ϵ0) ≥ 0.

3. Velocità delle onde scalari: c2
s = 1, garantita da cinetica

canonica.

4. Iperbolicità delle equazioni: l’operatore d’Alembertiano □
mantiene la causalità delle soluzioni.

Perturbazioni cosmologiche.
In uno sfondo FLRW con metrica

ds2 = (1 + 2Φ)c2dt2 − a(t)2(1− 2Ψ)dx⃗2,

le perturbazioni di ϵ introducono nuove sorgenti gravitazionali.
L’equazione per δϵ in spazio di Fourier è

δ̈ϵ+ 3Hδ̇ϵ+
(
c2k2

a2 +m2
ϵ

)
δϵ = Sϵ,

dove il termine sorgente è

Sϵ ∼ f ′(ϵ0) δLm + accoppiamenti metrici.

Lo slip gravitazionale Φ − Ψ resta nullo a primo ordine per
cinetica canonica, e la relazione di Poisson modificata diventa

k2Ψ ≃ 4πGa2 [f(ϵ0) δρ+ f ′(ϵ0)ρ δϵ+ δρϵ] .

Consistenza matematica.
L’analisi mostra che le perturbazioni lineari in RRP rimangono

ben poste e causalmente consistenti, purché il campo ϵ soddisfi le
condizioni di stabilità sopra elencate. In questo quadro:

• Le fluttuazioni di ϵ si propagano come onde scalari massive.

• Le metriche perturbate rispettano la struttura iperbolica delle
equazioni di Einstein modificate.

• La conservazione del 4–momento totale, ∇µ(T (ϵ)
µν +fT (m)

µν ) = 0,
è assicurata dall’identità di Bianchi.
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Conclusione.
La RRP risulta stabile a livello dinamico e lineare: non emergono

instabilità patologiche, né rotture della causalità. Le perturbazio-
ni cosmologiche introducono correzioni osservabili solo su scale
energetiche prossime a Ep, mantenendo la compatibilità con i dati
attuali e offrendo predizioni specifiche per scenari di cosmologia
primordiale.

7.1.3 Invarianza di gruppo e assenza di paradossi cinetici

Un aspetto cruciale per la consistenza della Relatività Ristretta
Planckiana (RRP) è la verifica che le trasformazioni di simmetria
preservino la struttura del gruppo di Lorentz modificato e che
non emergano paradossi cinetici. In questa sezione dimostriamo
l’invarianza dell’intervallo planckiano sotto le trasformazioni di
boost energetici e analizziamo la chiusura algebrica, la composizione
e l’assenza di contraddizioni fisiche analoghe ai paradossi dei sistemi
superluminali.

Invariante planckiano.
L’intervallo planckiano è definito da

s2
E = (cEt)2 − |x⃗|2.

Sotto un boost energetico lungo l’asse x,

x′ = γE (x− βEcEt) ,

t′ = γE

(
t− βE

cE
x

)
,

dove βE = E/Ep, con condizione |βE | < 1, e

γE = 1√
1− β2

E

.

La verifica diretta mostra che

(cEt′)2 − (x′)2 = (cEt)2 − x2 = s2
E ,

garantendo l’invarianza dell’intervallo planckiano.
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Struttura di gruppo e rapidità energetica.
Introduciamo la rapidità energetica ϕE definita da

tanh(ϕE) = βE , cosh(ϕE) = γE , sinh(ϕE) = γEβE .

In questi termini, un boost planckiano si scrive come

B(ϕE) =
(
rr

coshϕE − sinhϕE
− sinhϕE coshϕE

)
,

che preserva la metrica η = diag(1,−1).
La legge di composizione dei boost diventa additiva in ϕE :

B(ϕE,2)B(ϕE,1) = B(ϕE,1 + ϕE,2),

con chiusura e associatività garantite.
Composizione in più dimensioni e rotazione di Wigner.
Nel caso tridimensionale, la composizione di due boost planckiani

non collineari genera una rotazione di Wigner RW , esattamente
come nella Relatività Ristretta classica. Si ha quindi

BE(n̂2, ϕE,2)BE(n̂1, ϕE,1) = RW (Ω, k̂)BE(n̂12, ϕE,12),

dove l’asse k̂ è parallelo a n̂2 × n̂1, e l’angolo Ω è calcolato tramite
le funzioni iperboliche delle rapidità energetiche. Ciò conferma che
la struttura del gruppo è isomorfa a SO+(1, 3).

Algebra di Lie.
I generatori dei boost energetici Ki e delle rotazioni Ji soddisfano

le relazioni di commutazione:

[Ji, Jj ] = ϵijkJk, [Ji, Kj ] = ϵijkKk, [Ki, Kj ] = −ϵijkJk,

le stesse della Relatività Ristretta, mostrando che l’algebra resta
so(1, 3). La sola modifica è nell’interpretazione del parametro di
boost, sostituendo v/c con E/Ep.

Assenza di paradossi cinetici.
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Nella Relatività Ristretta classica, i paradossi cinetici (ad esem-
pio il paradosso dei gemelli in formulazioni improprie o la propa-
gazione superluminale) derivano dal tentativo di superare il limite
v ≥ c. Nella RRP, la condizione |βE | < 1 implica

E < Ep,

impedendo la possibilità di superare l’energia di Planck e quindi
eliminando qualsiasi ambiguità interpretativa.

Le proprietà seguenti garantiscono la coerenza:

• Chiusura: la composizione di due trasformazioni è ancora
una trasformazione valida del gruppo di Lorentz planckiano.

• Inverso: per ogni boost B(βE) esiste B(−βE).

• Assenza di super-energia: non esistono trasformazioni che
portino E oltre Ep.

• Simmetria speculare: la struttura matematica resta identica
a quella della Relatività Ristretta, con la sostituzione v/c 7→
E/Ep.

Conclusione.
L’analisi mostra che la RRP conserva l’invarianza di gruppo

e l’algebra di Lorentz, garantendo che non emergano paradossi
cinetici. Questo rafforza la consistenza della teoria, assicurando che
le trasformazioni planckiane costituiscano un gruppo ben definito,
stabile e compatibile con le simmetrie fondamentali della fisica.

8 Predizioni sperimentali

8.1 Collisioni ultra-energetiche (acceleratori, raggi
cosmici)

Impostiamo cE = c e definiamo il parametro adimensionale ε ≡
Estate/Ep, con 0 ≤ ε < 1. Il fattore planckiano è

γE(ε) = 1√
1− ε2

, meff ≡ mγE .
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8.1 Collisioni ultra-energetiche (acceleratori, raggi cosmici)

La relazione di dispersione a livello di particella libera diventa

E2 = (pc)2 +
(
meffc

2)2 ⇐⇒ E2

c2 − p
2 = (meffc)2.

Per ε≪ 1 si ha l’espansione

γE = 1 + 1
2ε

2 + 3
8ε

4 +O(ε6), meff = m
(
1 + 1

2ε
2 + · · ·

)
.

Osservabile 1 — Vite medie di stati instabili (test da
decadimenti relativistici in collider). La legge di decadimen-
to si scrive in termini del tempo proprio fisico; usando dτphys =
γE dτgeo = γE dt/γv si ottiene per la vita media osservata:

τRRP
lab = γv

γE
τ0 = τSR

lab

(
1− 1

2ε
2 +O(ε4)

)
,

dove γv = 1/
√

1− β2
v è il fattore cinetico ordinario e τ0 la vita media

nel riposo proprio. La RRP predice quindi una riduzione frazionaria
≃ 1

2ε
2 rispetto alla dilatazione di tempo prevista dalla Relatività

Ristretta. Stime d’ordine di grandezza: a LHC (Ebeam ∼ 7 TeV per
protone) εLHC ∼ 7× 1012 eV/(1.22× 1028 eV) ≈ 6× 10−16, dunque
1
2ε

2 ∼ 2 × 10−31; per raggi cosmici ultra-energetici E ∼ 1020 eV,
ε ∼ 8× 10−9 e 1

2ε
2 ∼ 3× 10−17.

Osservabile 2 — Energie di soglia per produzione di stati
massivi. Per un processo a+ b→ X con b a riposo in laboratorio,
lo scalare di Mandelstam soddisfa s = m2

ac
4 +m2

bc
4 + 2mbc

2Ea. In
RRP, le masse a soglia sono rimpiazzate da mi,eff = miγE(εi) per
gli stati finali prodotti. La soglia diventa

sRRP
th =

(∑
i∈X

mi,effc
2
)2
, ERRP

a,th = sRRP
th −m2

ac
4 −m2

bc
4

2mbc2 .

Per εi ≪ 1,

sRRP
th ≃

(∑
i

mic
2
)2
[
1 +

∑
i

mi∑
jmj

ε2
i +O(ε4)

]
,
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8 Predizioni sperimentali

quindi lo shift frazionario di soglia è dell’ordine
∑
i

mi∑
j
mj

1
2ε

2
i .

A energie di collider e persino per UHECR tale correzione è
estremamente piccola.

Osservabile 3 — Bilancio di energia-impulso a livello di
partone. Nel quadro fattorializzato, gli invarianti partonici ŝ, t̂, û
restano determinati dalle frazioni x1,2 e da s, ma le masse efficaci
nei canali di produzione 2→ 2 o 2→ n sono meff . Ad esempio, per
qq̄ → ℓ+ℓ− vicino alla soglia di una risonanza di massa M :

ŝRRP
th ≃M2

effc
4 = M2c4 γE(εM )2,

con una traslazione della posizione e dell’ampiezza del picco propor-
zionale a ε2

M . In pratica, per εM ≪ 1 lo spettro in massa invariante
risulta indistinguibile dal caso standard entro l’attuale risoluzione
sperimentale, ma fornisce un “null test” ad altissima precisione.

Osservabile 4 — Invarianza dell’angolo di Wigner nelle
catene di boost del sistema evento. La composizione di due
boost non collineari introduce la rotazione di Wigner con

tanΩ
2 k̂ =

sinh
(ϕ1

2
)

sinh
(ϕ2

2
)

(n̂2 × n̂1)
cosh

(ϕ1
2
)

cosh
(ϕ2

2
)

+ (n̂1 ·n̂2) sinh
(ϕ1

2
)

sinh
(ϕ2

2
) ,

dove tanhϕi = βE,i e βE,i = Ei/Ep. In RRP la struttura angolare
resta identica alla Relatività Ristretta (dipende solo da ϕi), ma
l’identificazione ϕi = artanh(Ei/Ep) permette test consistenziali
confrontando catene cinematiche ricostruite a diverse energie.

Programma di misura (indicativo).

1. In acceleratore: fit multilivello delle vite medie di stati B, D,
τ ed iperoni a energie differenti, cercando una dipendenza
∝ −1

2ε
2.

2. Near-threshold scans: scansione fine di soglia per canali tt̄,
W+W−, ZH per vincolare eventuali traslazioni ∝ ε2 in sth.
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8.2 Modifiche al redshift cosmologico

3. In raggi cosmici: estrazione di limiti su ε da distribuzioni di
profondità di massimo Xmax e frazioni di muoni nelle docce,
tramite confronti a modello in cui le masse efficaci meff entrano
nei vincoli cinematici dei processi adronici primari.

Ordini di grandezza.

εLHC ∼ 10−15, εUHECR(1020 eV) ∼ 8× 10−9.

Le correzioni principali scalano come O(ε2); la RRP risulta quindi
compatibile con tutti i dati attuali, e richiede misure di precisione
o energie astrofisiche estreme per essere sondabile in laboratorio.

8.2 Modifiche al redshift cosmologico
Definizione operativa del redshift (RRP). Nella RRP la
frequenza misurata da un osservatore è la derivata di fase ri-
spetto al tempo proprio fisico del suo “clock planckiano”, con
dτphys = γE(ϵ) dτgeo, γE(ϵ) = 1/

√
1− ϵ2, ϵ ≡ Estate/Ep. Dato il

4-momento del fotone kµ e la 4-velocità geometrica dell’osservatore
uµ = dxµ/dτgeo, la frequenza fisica misurata è

νphys = 1
2π

dϕ

dτphys
= 1

2π
dϕ

dτgeo

dτgeo

dτphys
= −(kµuµ)

2π
1

γE(ϵ) .

Ne segue che il redshift tra emissione (e) e osservazione (o) è

1 + zRRP = νphys,e

νphys,o
= (kµuµ)e

(kµuµ)o
γE(ϵo)
γE(ϵe)

.

Caso FRW (comoventi). Per un universo omogeneo e isotropo,
con emettitore e osservatore comoventi, vale (kµuµ)e

(kµuµ)o = a0
ae

. Allora

1 + zRRP = a0

ae

γE(ϵo)
γE(ϵe)

.

Se l’osservatore ha energia di stato trascurabile ϵo ≃ 0 (laboratorio),
risulta

1 + zRRP ≃
a0

ae

1
γE(ϵe)

.
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8 Predizioni sperimentali

Espansione per ϵ≪ 1. Poiché γE(ϵ) = 1 + 1
2ϵ

2 + 3
8ϵ

4 +O(ϵ6),
otteniamo

1+zRRP = (1+zFRW) γE(ϵo)
γE(ϵe)

≃ (1+zFRW)
[
1 + 1

2
(
ϵ2o − ϵ2e

)
+O(ϵ4)

]
.

Con ϵo ≃ 0 segue la correzione leading

∆z ≡ zRRP − zFRW ≃ −
1
2 ϵ

2
e (1 + zFRW) +O(ϵ4),

ovvero una lieve riduzione del redshift apparente quando la sorgente
ha ϵe non trascurabile.

Redshift gravitazionale statico (generico). In uno spazio-
tempo statico con metrica ds2 = g00c

2dt2 − . . ., il redshift totale
tra due radiatori statici è

1 + zRRP =
√
g00(o)
g00(e)

γE(ϵo)
γE(ϵe)

.

Il fattore geometrico riproduce il redshift gravitazionale standard,
mentre il rapporto γE(ϵo)/γE(ϵe) implementa la correzione di clock
planckiano.

Drift del redshift. Indichiamo con to il tempo proprio fisico
dell’osservatore locale. La derivata temporale del log-redshift è
d

dto
ln
(
1 + zRRP

)
= d

dto
ln
(
1 + zFRW

)
+ d

dto
ln γE(ϵo)−

d

dto
ln γE(ϵe).

Per ϵo = costante e ϵe = ϵe(z), usando d
dto

= −H0(1+z) ddz si ottiene

żRRP = żFRW−(1+zFRW) d ln γE(ϵe)
dz

żFRW, żFRW = (1+z)H0−H(z).

Per ϵe ≪ 1,
d ln γE
dz

≃ ϵe
dϵe
dz

+O(ϵ3e),

così la correzione è di ordine ϵe dϵe/dz e diventa potenzialmente
osservabile solo se la sorgente traccia un regime energetico vicino
alla scala di Planck.
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8.3 Segnali gravitazionali da collassi stellari estremi

Sintesi. La modifica RRP al redshift è un fattore moltiplicativo
semplice

1 + zRRP = (1 + zgeo) γE(ϵo)
γE(ϵe)

,

dove 1 + zgeo = (kµuµ)e
(kµuµ)o cattura gli effetti geometrici (espansione

cosmica e/o potenziali gravitazionali) e il rapporto di γE implementa
la diversa “velocità” dei clock planckiani di emettitore e osservatore.
Nel limite ϵo, ϵe → 0 si recupera esattamente la formula standard.

8.3 Segnali gravitazionali da collassi stellari estremi
In scenari di collasso gravitazionale (core–collapse di supernove,
formazione di stelle di neutroni ipermassive o buchi neri), la Re-
latività Ristretta Planckiana (RRP) modifica la generazione del
segnale rispetto alla Relatività Generale (RG) attraverso il “ripeso”
energetico della sorgente. Si introduce il fattore

γE(E) = 1√
1− (E/Ep)2

, ΓE ≡ γ−2
E = 1− (E/Ep)2 ,

e, per campi materiali con energia locale prossima a una frazione non
trascurabile di Ep, il tensore materia che gravita viene attenuato
come T (eff)

µν = ΓE Tµν . Nelle stime seguenti assumiamo ΓE quasi
costante nella regione emissiva durante l’intervallo temporale del
burst.

Relazione di base (quadrupolo). In RG, il tensore di
polarizzazione lontano dalla sorgente è

hTT
ij (t,x) ≃ 2G

c4D
Q̈TT
ij (t−D/c) ,

dove Qij è il momento di quadrupolo di massa della sorgente e D
la distanza. In RRP, l’accoppiamento gravitazionale “vede” una
sorgente efficace con masse M eff

a = ΓEMa e densità ρeff = ΓEρ,
quindi

Qeff
ij =

∫
ρeff

(
xixj − 1

3δijr
2
)
d3x = ΓE Qij ,
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8 Predizioni sperimentali

e, a parità di cinematica interna, le seconde derivate temporali si
scalano come Q̈eff

ij ≃ ΓE Q̈ij . Ne segue

hTT
ij,RRP ≃ ΓE hTT

ij,RG .

Lo strain di burst da collasso è quindi ridotto da un fattore ΓE
rispetto alla previsione RG con gli stessi profili cinematici.

Frequenze caratteristiche. Le frequenze di picco dei modi di
oscillazione della protostella di neutroni e dell’instabilità dinamica
di barra scalano come

f ∼ 1
2π

√
GM eff

R3 ,

con M eff = ΓEM e raggio R debole-dipendente dall’equazione di
stato. Trascurando correzioni di R indotte da ΓE a primo ordine,

fRRP

fRG
≃
√

ΓE .

Per ΓE < 1 si prevede un “red-tilt” del contenuto spettrale, con
spostamento di fpeak verso frequenze più basse.

Energia irradiata e SNR. La potenza quadrupolare istantanea
in RG è

PRG = G

5c5

〈 ...
Q ij

...
Q ij

〉
.

In RRP, usando Qeff
ij = ΓEQij , si ottiene a parità di cinematica

PRRP ≃ Γ2
E PRG , ERRP

GW ≃ Γ2
E E

RG
GW .

In banda stretta, lo strain spettrale scala come

h̃RRP(f) ≃ ΓE h̃RG

(
f√
ΓE

)
,
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8.3 Segnali gravitazionali da collassi stellari estremi

ossia ampiezza ridotta e picco spostato a fpeak →
√

ΓE fpeak. Per
uno spettro a singolo picco, il rapporto di segnale-rumore (SNR) si
approssima con

SNR2
RRP ≃ 4

∫ |h̃RRP(f)|2
Sn(f) df ≃ Γ2

E 4
∫ ∣∣∣h̃RG(f ′)

∣∣∣2
Sn
(√

ΓE f ′
) df ′ ,

per cui la variazione di SNR dipende sia dall’abbassamento dell’am-
piezza (∝ ΓE) sia dal riposizionamento dello spettro rispetto alla
curva di rumore Sn.

Tempi caratteristici del burst. I tempi di crescita delle
instabilità idrodinamiche e magnetorotazionali scalano come

τ ∼ Ω−1 , Ω ∼

√
GM eff

R3 ,

quindi
τRRP

τRG
≃ Γ−1/2

E .

Il burst risulta più “largo” nel dominio del tempo per ΓE < 1,
coerentemente con lo shift a basse frequenze.

Mappatura su parametri osservativi. L’inferenza bayesiana
in RG ricava massa gravitazionale e raggio a partire da fpeak e
dall’ampiezza. In presenza di RRP, un’analisi RG “ignara” subi-
sce un bias sistematico. Per un indicatore fpeak calibrato come
fRG

peak(M,R), la misura reale obbedisce a

fobs ≃
√

ΓE fRG
peak(M,R) ,

che verrebbe interpretata in RG come una massa apparente Mapp
inferiore. Linearizzando,

∆f
f
≡ fobs − fRG

fRG
≃ −1

2 (1− ΓE) ,
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8 Predizioni sperimentali

per (1− ΓE)≪ 1. Un test nullo consiste nel confrontare la massa
inferita da onde gravitazionali con quella barionica indipendente
da neutrini e fotoni del breakout; una discrepanza coerente con
∆f/f ≃ −1

2(1− ΓE) segnerebbe un indizio a favore della RRP.

Chirp post-merger di doppie stelle di neutroni. Se il core
collassato rimane temporaneamente sostenuto e produce un segnale
quasi-periodico, la frequenza di deriva df/dt è in RG proporzionale
al trasporto di energia angolare via onde(

df

dt

)
RG
∝ fnA(M,R,EOS) ,

con n dipendente dal meccanismo. In RRP,(
df

dt

)
RRP
≃ Γ2

E

(
df

dt

)
RG

, fRRP ≃
√

ΓE fRG ,

da cui una legge di deriva effettiva
dfRRP

dt
≃ Γ2+n/2

E

dfRG

dt
.

Misure combinate di {fpeak, df/dt, h} permettono di isolare ΓE
rompendo degenerazioni con l’equazione di stato.

Vincoli attesi e sensibilità. Se uno strumento è sensibile a un
errore relativo minimo δf/f , la più piccola deviazione rilevabile
dall’ipotesi RG corrisponde a

1− ΓE ≳ 2 δf
f
.

Per δf/f ∼ 10−2 su un picco fpeak ben misurato, si ottiene un limite
di ordine 1 − ΓE ≳ 2 × 10−2. In termini di rapporto energetico
locale ε ≡ E/Ep,

ΓE = 1− ε2 ⇒ ε ≲

√
2 δf
f
.

Questo fornisce un criterio operativo per trasformare una misura
spettrale in un limite diretto su ε in ambiente di collasso.
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Osservabili riassuntivi. Le tre firme principali proposte sono

fpeak : fRRP/fRG ≃
√

ΓE ,

ampiezza : hRRP/hRG ≃ ΓE ,

energia irradiata : ERRP
GW /ERG

GW ≃ Γ2
E .

La combinazione di questi tre rapporti, misurata evento per evento e
confrontata con simulazioni idrodinamiche relativistiche, costituisce
un test diretto e falsificabile della RRP in regime di collasso stellare
estremo.

9 Falsificabilità

9.1 Condizioni di esclusione empirica
Obiettivo di questa sezione è specificare condizioni quantitative che,
se verificate sperimentalmente, falsificano la RRP nel suo assetto
minimo (cinematica planckiana, clock energetico con γE , materia
“ripesata” da T (eff)

µν = Tµν/γ
2
E).

1) Violazione del bound energetico di Planck. Misura di un
evento fisico localizzato con energia in un sistema inerziale tale che

Eevent > (1 + δ)Ep

con incertezza complessiva ben caratterizzata e δ > 0 (ad es. δ ∼
10−3) falsifica il Postulato 1 (invarianza e massimalità di Ep).

2) Assenza di dipendenza energetica del “clock” oltre i
limiti consentiti. Il postulato 2 implica, per E ≪ Ep,

dτphys

dt
= γE(E) = 1√

1− (E/Ep)2
= 1 + 1

2

(
E

Ep

)2

+O
(
E

Ep

)4

.
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9 Falsificabilità

Se un esperimento a energia caratteristica E stabilisce il limite∣∣∣∣dτphys

dt
− 1

∣∣∣∣ < ϵexp

e contemporaneamente vale

1
2

(
E

Ep

)2

> ϵexp,

la RRP è falsificata (poiché predice un effetto minimale superiore
al bound osservativo).

3) Composizione dei “boost energetici” non conforme alla
legge di gruppo. La cinematica RRP richiede, per parametri
βi = Ei/Ep,

β12 = β1 + β2

1 + β1β2
, γ12 = γ1γ2

(
1 + β1β2 cos θ

)
(θ è l’angolo tra le direzioni). L’osservazione controllata di una
sequenza di “energizzazioni” che realizzi un β12 statisticamente
incompatibile con la relazione sopra falsifica la struttura di gruppo
(e quindi il Postulato 3).

4) Rotazione di Wigner in composizioni non collineari
mancante o con ampiezza sbagliata. Per due boost di rapidità
ϕ1, ϕ2 e direzioni con prodotto scalare cos θ, l’angolo di Wigner deve
soddisfare

tan
(Ω

2

)
k̂ = sinh(ϕ1/2) sinh(ϕ2/2) (n̂2 × n̂1)

cosh(ϕ1/2) cosh(ϕ2/2) + cos θ sinh(ϕ1/2) sinh(ϕ2/2) .

Una misura che escluda Ω (o il suo segno/asse k̂) previsto a parità
di ϕi e θ falsifica la cinematica RRP.
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9.1 Condizioni di esclusione empirica

5) Soglie cinematiche e relazioni di dispersione a energia
alta incompatibili con meff = mγE. Nel settore di particella
libera si ha

H2 = (pcE)2 +
(
mγE c

2
E

)2
.

Qualsiasi fenomenologia di soglia (apertura/chiusura di canali a
due corpi, produzione multi-particella) che richieda una relazione
diversa o che risulti incompatibile con la sostituzione m→ mγE(E)
entro le incertezze sperimentali falsifica la dinamica RRP minima.

6) Redshift (cosmico o gravitazionale) privo della correzio-
ne planckiana minima. Nel quadro omogeneo-isotropo discusso
in precedenza,

1 + zRRP = a0

ae

γE(Ee)
γE(E0) .

Se si dimostra sperimentalmente che, a parità di a0/ae, lo scarto∣∣∣∣γE(Ee)
γE(E0) − 1

∣∣∣∣
è inferiore a un limite che eccede la predizione minima ∼ 1

2 [(E2
e −

E2
0)/E2

p], la RRP è falsificata.

7) Assenza di saturazione/attenuazione nel settore gravita-
zionale efficace. Con T

(eff)
µν = Tµν/γ

2
E , osservabili che tracciano

direttamente la “forza” della sorgente (ad esempio masse dina-
miche, parametri di lente gravitazionale in regimi ad altissima
densità/curvatura) devono mostrare la riduzione

Seff ∝
1
γ2
E

.

La misura robusta di Seff che escluda tale attenuazione al livello
atteso per il valore stimato di E falsifica la RRP minimale.
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9 Falsificabilità

8) Consistenza PPN oltre i limiti interni del modello mini-
mo. Nel limite post-newtoniano della formulazione scalare-tensore
minima vale

γPPN − 1 ≃ −2α2
0, βPPN − 1 ≃ 1

2α
2
0β0,

con α0 = 1
2f

′(ε0)/f(ε0). La misurazione di γPPN e βPPN incompa-
tibili con qualsiasi scelta regolare di f nel range fisico 0 ≤ ε < 1
falsifica la RRP in tale assetto.

9) Coerenza del gruppo di simmetria e assenza di
superluminalità. La struttura SO+(1, 3) richiede l’invariante

s2
E = (cEt)2 − ∥x∥2,

e la condizione |βE | < 1 assicura E < Ep. L’osservazione di trasfor-
mazioni cinematiche equivalenti a |βE | ≥ 1 o che violino l’invarianza
di s2

E falsifica la teoria.

Protocollo statistico essenziale per i test di cui sopra. Si
richiede: (i) modellizzazione e sottrazione dei bias sistematici; (ii)
stima bayesiana o frequentista con intervalli credibili/confidenza che
includano la propagazione di incertezze su E, distanza, calibrazioni;
(iii) criteri di esclusione fissati a significatività ≥ 5σ (o Bayes factor
decisivo) per dichiarare la falsificazione.

9.2 Confronto con osservazioni già disponibili (LIGO,
JWST, telescopi gamma)

In questa sezione confrontiamo le previsioni operative della RRP
con tre insiemi di dati già disponibili: onde gravitazionali (LI-
GO/Virgo/KAGRA), sorgenti ad alto redshift (JWST) e lampi
di raggi gamma/AGN (Fermi–LAT, MAGIC, H.E.S.S.). Il punto-
chiave della RRP, per i test in banda elettromagnetica e gravita-
zionale, è che per campi liberi massless si ha velocità di fase e di
gruppo non dispersiva, vγ = c e vg = c, e nessun termine di disper-
sione lineare in energia nello spazio piatto: ciò implica coerenza (a
livello leading order) con i più stringenti vincoli di tempo-di-volo e
di dispersione.
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9.2 Confronto con osservazioni già disponibili (LIGO, JWST, telescopi
gamma)

Onde gravitazionali (LIGO/Virgo/KAGRA). La RRP
non modifica la cinematica dei gravitoni in vuoto: il limite previsto
è ∣∣∣∣vg − cc

∣∣∣∣ ≃ 0 (RRP, vuoto).

Il confronto con la controparte osservativa multimessaggero fornisce
il vincolo ∣∣∣∣vg − cc

∣∣∣∣ ≲ 10−15,

ricavato dalla contemporanea rilevazione dell’onda gravitazionale
GW170817 e del lampo gamma GRB 170817A3. Inoltre, dai dati è
stato posto un limite sulla massa del gravitone compatibile con

mgc
2 ≲ 10−23 eV, λg = ℏ

mgc
≳ 1013 km,

coerente con l’assenza di dispersione per perturbazioni tensoriali
in vuoto prevista dalla RRP4. Eventuali correzioni RRP possono
entrare solo via effetti di γE in regioni di forte campo e alta energia
locale (sorgente), ma non come dispersione di propagazione su
grande distanza.

Sorgenti ad alto redshift (JWST). Le relazioni cinematica-
di-vuoto della RRP si riducono al caso standard per ϵ = E/Ep ≪ 1.
Gli spettri e i redshift spettroscopici confermati da JWST fino a z ≃
13.2 sono quindi compatibili, a livello puramente cinematico, con il
limite RRP a bassa energia5. In questa sezione non introduciamo
correzioni dinamico-cosmologiche (discusse altrove): qui rileviamo
solo che la definizione osservativa di redshift e la misura di righe di

3B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collabo-
ration), Gravitational Waves and Gamma-rays from a Binary Neutron Star
Merger: GW170817 and GRB 170817A, Phys. Rev. Lett. 119, 161101 (2017),
doi:10.1103/PhysRevLett.119.161101, arXiv:1710.05834.

4R. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), GWTC-
3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second
Part of the Third Observing Run, arXiv:2111.03606 (2021).

5E. Curtis-Lake et al., Spectroscopic confirmation of galaxies at redshifts greater
than 10, Nature Astronomy 7, 622–632 (2023), doi:10.1038/s41550-023-01921-1.
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9 Falsificabilità

emissione non richiedono dispersione fotonica in vuoto, in linea con
la RRP.

Telescopi gamma (Fermi–LAT, MAGIC, H.E.S.S.). I
vincoli più stretti da tempi-di-volo su fotoni di altissima energia
escludono una dispersione lineare in energia del tipo

vγ(E) ≃ c

(
1± E

MQG

)

con scala MQG inferiore o comparabile a Ep; i dati richiedono

MQG,1 ≳ O(Ep),

coerente con la previsione RRP vγ(E) = c in vuoto (assenza di LIV
lineare). In particolare, l’analisi del GRB 090510 rilevato dal Fermi
GBM/LAT ha imposto che, se esistesse una violazione di Lorentz
lineare, la scala dell’energia quantistica a cui appare dovrebbe
superare la Scala di Planck6. Anche qui, eventuali effetti RRP
entrano nel settore “di sorgente” via γE (clock/massa efficace) e
non come termine di dispersione lungo il cammino.

Sintesi. (i) Cinematica di propagazione: la RRP, per campi
massless in vuoto, è compatibile con i vincoli su vg e l’assenza di
dispersione fotonica/gravitazionale su scale astrofisiche; (ii) Settore
di sorgente: eventuali scarti rispetto a GR standard possono emer-
gere solo in ambienti ad altissima densità/curvatura (ruolo di γE),
da cercare in fasi precoci di coalescenza o in transienti estremi; (iii)
Non sono richieste (né consentite) nella RRP correzioni di tipo LIV
lineare in energia nella propagazione su grande distanza, in accordo
con i limiti attuali.

9.3 Confronto diretto con segnali previsti da DSR,
Gravity’s Rainbow e de Sitter invariant relativity

Obiettivo, ipotesi e notazione Confrontiamo in modo opera-
tivo le previsioni osservabili della Relatività Ristretta Planckiana

6V. Vasileiou et al. (Fermi LAT Collaboration), Constraints on Lorentz Invariance
Violation from Fermi-Large Area Telescope Observations of Gamma-Ray Bursts,
Phys. Rev. D 87, 122001 (2013), doi:10.1103/PhysRevD.87.122001, arXiv:1305.3463.
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(RRP) con tre famiglie di estensioni relativistiche: (i) la Doubly
Special Relativity (DSR), (ii) Gravity’s Rainbow (GRb), e (iii) la
de Sitter Special Relativity (dSSR). Adotteremo le seguenti ipotesi
comuni:

• Per RRP la struttura metrica resta minkowskiana, i boost
sono caratterizzati dal parametro energetico βE = E/Ep e dal
fattore γE = (1− β2

E)−1/2; poniamo cE = c.
• In DSR le relazioni di dispersione sono debolmente deformate

in potenze di Lp (o E−1
p ), con boost non lineari nello spazio

degli impulsi.
• In GRb la metrica dipende dall’energia tramite funzioni

adimensionali f(E/Ep), g(E/Ep).
• In dSSR il gruppo di simmetria è SO(4, 1), con raggio di

curvatura l2 = 3/Λ; localmente la velocità limite resta c.
Le grandezze cui confronteremo le teorie sono: velocità di fa-
se/gruppo di campi massless, ritardi di tempo-di-volo su distanze
cosmologiche, soglie cinematiche, redshift, ampiezze/frequenze di
onde gravitazionali da sorgenti estreme.

Cinematica di propagazione dei campi massless: confronto
dei segnali di dispersione

RRP (assenza di dispersione). Proposizione 1. In RRP la
propagazione di campi massless in vuoto è non dispersiva: vph =
vgr = c, indipendentemente da E.

Dimostrazione. L’intervallo planckiano è s2
E = (ct)2 − |x⃗|2. Per

curve nulle s2
E = 0 quindi c2dt2 = dx⃗ 2 e v ≡ |dx⃗|/dt = c. Il fattore

di clock dτphys = γE(E) dτgeo non interviene in una condizione di
luce, che è puramente geometrica (nullità dell’intervallo). La fase
ϕ = kµx

µ soddisfa kµkµ = 0 e quindi ω = ck. Dunque vph = ω/k =
c e vgr = ∂ω/∂k = c. □

DSR (dispersione tipica). Una classe ampia di DSR adotta, a
primo ordine in Lp, la relazione deformata

E2 − c2p2 −m2c4 + η Lp c p
2E +O

(
L2
p

)
= 0,
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con η adimensionale. Per m = 0, risolvendo per E(p) a primo ordine
si ottiene

E(p) ≃ cp

[
1− η

2
Lp
c
E

]
⇒ vgr = ∂E

∂p
≃ c

(
1− η

2
Lp
c
E

)
,

che implica ritardi ∆t ∼ (η/2) (Lp/c)E L su una distanza L. Segnale
distintivo: ritardi lineari (o potenze superiori) in E.

Gravity’s Rainbow (dispersione geometrica). La metri-
ca arcobaleno è ds2 = −(dt)2/f2 + dx⃗ 2/g2. Curve nulle danno
|dx⃗|/dt = c(E) = c g/f . Se f ̸= g si ha vph = vgr = c(E) ̸= c,
determinando ritardi ∆t ∼

∫
(1/c(E)− 1/c) dℓ. Segnale: velocità di

luce energia-dipendente fissata da f, g.

dSSR (nessuna dispersione locale). In coordinate stereogra-
fiche gµν = Ω2(x)ηµν . Per curve nulle ds2 = 0 ⇒ ηµνdx

µdxν = 0:
localmente v = c. Non emergono ritardi energia-dipendenti; gli ef-
fetti sono geometrici (curvatura, non dispersione). Segnale: assenza
di dispersione per fotoni/gravitoni, come in RRP.

Corollario osservativo. La misura di ritardi energia-dipendenti
∝ En (n ≥ 1) in tempo-di-volo di fotoni o gravitoni esclude RRP
e dSSR e favorisce DSR/GRb; la non-osservazione sistematica
favorisce RRP/dSSR e disfavorisce DSR/GRb con n = 1.

Soglie cinematiche e relazioni di dispersione massi-
vo–massless

RRP (massa efficace ma luce standard). Per stati massivi
in RRP: massa efficace meff = mγE e dispersione

E2 = c2p2 + (meffc
2)2, meff = m

(
1− E2

E2
p

)−1/2

.

Alle soglie 2→ n con canali massivi, l’energia a soglia subisce uno
shift solo via meff , mentre i campi massless restano coni di luce
standard. Le correzioni sono O

(
(E/Ep)2).
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DSR (soglie modificate dal termine di LIV). La correzione
f ∼ Lpcp

2E altera gli invarianti di Mandelstam a O(Lp), produ-
cendo shift di soglia che possono essere O(E/Ep) e non puramente
O((E/Ep)2). Segnale: deformazioni di soglia lineari (o con potenze
inferiori a 2) non presenti in RRP.

GRb (soglie metriche). La dipendenza (f, g) entra nella defini-
zione locale degli invarianti. Se le stesse funzioni valgono per tutti
i campi, le soglie ereditano la dipendenza energetica geometrica.
Segnale: shift di soglia controllati da f, g, correlati a segnali di
tempo-di-volo.

dSSR (soglie geometriche globali). Le traslazioni standard
sono sostituite da combinazioni con trasformazioni conformi; in
collisioni locali su scale ≪ l gli effetti di soglia sono soppressi da
potenze di 1/l. Segnale: nessuna anomalia di soglia su scale non
cosmologiche.

Redshift e drift del redshift

RRP. La frequenza misurata dal clock planckiano è νphys =
−(kµuµ)/(2πγE). Per sorgenti/osservatori comoventi in FRW:

1 + zRRP = a0

ae

γE(ϵo)
γE(ϵe)

.

Con ϵo ≃ 0 si ottiene una lieve riduzione del redshift apparente:
∆z ≃ −1

2ϵ
2
e(1 + zFRW).

DSR e GRb. In DSR, eventuali termini di LIV possono entrare
nella misura di (kµuµ) per effetto di dispersione; in GRb, se f ̸= g, la
definizione operativa di tempo coord. e lunghezza scala diversamente
con E, con fattori addizionali ∝ f, g già nelle geodetiche nulle.
Segnale: correzioni al redshift lineari o comunque non quadratiche
in ϵ.
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dSSR. Il redshift è puramente geometrico: 1 + z = a0/ae (per
comoventi). Nessun fattore energia-dipendente. Segnale: identico al
caso FRW standard.

Onde gravitazionali da collassi estremi: ampiezza,
frequenza e chirp

RRP (attenuazione di sorgente). Nel regime lineare

□h̄µν = −16πG
c4 T (eff)

µν , T (eff)
µν = 1

γ2
E

Tµν .

Al quadrupolo

hRRP
ij ≃ ΓE hRG

ij , ΓE ≡ γ−2
E = 1−

(
E

Ep

)2

,

e le frequenze caratteristiche scalano come fRRP/fRG ≃
√

ΓE . Se-
gnale: combinazione (h, f, EGW) che verifica h ∝ ΓE , f ∝

√
ΓE ,

EGW ∝ Γ2
E .

DSR e GRb (dispersione di propagazione). Se le onde gra-
vitazionali soddisfano una dispersione modificata (DSR) o una
metrica energia-dipendente (GRb), allora, oltre (o in luogo) di
effetti di sorgente, emerge dispersione in propagazione:

vg(f) ̸= c, ∆t ∼
∫ [ 1

vg(f) −
1
c

]
dℓ,

con deformazioni di fase accumulate su grandi distanze. Segnale:
decoerenza di fase frequenza-dipendente lungo la propagazione,
assente in RRP.

dSSR (assenza di dispersione e sorgente GR-like). Local-
mente vg = c; su scale≪ l le sorgenti seguono RG. Segnale: nessuna
dispersione di propagazione; nessuna attenuazione ΓE di tipo RRP.
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Teoremi di non-equivalenza operativa

Teorema A (tempo-di-volo). Sia ∆t(E) il ritardo fra due
fotoni/gravitoni di energie E1 ̸= E2 emessi co-fase da una stessa
sorgente e rivelati dopo una distanza L. Se ∆t(E) contiene un
termine ∝ En con n ≥ 1 non sopprimibile geometricamente (Λ-
indipendente), allora RRP e dSSR sono escluse, mentre DSR/GRb
sono compatibili.

Dimostrazione. In RRP e dSSR vgr = c localmente ed ∆t non
dipende da E (salvo effetti di sorgente non-disperdenti). In DSR
e GRb si ha vgr(E) ̸= c per m = 0, producendo inevitabilmente
∆t(E) ∝ En a primo ordine efficace in Lp o nei rapporti f, g. □

Teorema B (triplice discriminante GW). Sia un burst
gravitazionale con (hobs, fpeak,obs, EGW,obs). Se i dati soddisfano
simultaneamente

hobs

hGR
≃ ΓE ,

fpeak,obs

fGR
≃
√

ΓE ,
EGW,obs

EGW,GR
≃ Γ2

E ,

per una ΓE ∈ (0, 1) indipendente dalla distanza di propagazio-
ne, allora il segnale è compatibile con RRP ed esclude una pura
dispersione di propagazione (tipica DSR/GRb) e dSSR.

Dimostrazione. La scalatura {1, 1
2 , 2} in potenza di ΓE è una

firma di sorgente nel termine quadrupolare, non riproducibile con
una sola deformazione di propagazione, che agisce principalmente
sulla fase e sul tempo-di-volo, non simultaneamente su ampiezza ed
energia in quel rapporto. In dSSR non compare alcun fattore ΓE . □

Tavola di discriminanti osservativi (riassunto)

r

Osservabile RRP DSR GRb dSSR
ToF massless 0 ∝ En ∝ E via f, g 0
Soglie ∝ (E/Ep)2 via meff ∝ E/Ep tipico f, g -dip. ≪ 1 (curv.)
Redshift ×γE(ϵo)/γE(ϵe) LIV -dip. f, g -dip. standard
GW: fase no disp. disp. disp. no disp.
GW: (h, f, EGW) ∝ {ΓE ,

√
ΓE ,Γ2

E} no no no

Programma di test incrociato e criteri di esclusione
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Test 1 (tempo-di-volo multi-messenger). Misurare ∆t(E)
per fotoni e, ove possibile, per componenti in frequenza dei segnali
GW:

∆tfit(E) ?= α

(
E

Ep

)n
L+ β,

con α compatibile con zero⇒ favore a RRP/dSSR; α ̸= 0⇒ favore
a DSR/GRb.

Test 2 (triplice firma GW di sorgente). Per burst di collasso
o post-merger, verificare

hobs

hGR
≃ ΓE ,

fobs

fGR
≃
√

ΓE ,
EGW,obs

EGW,GR
≃ Γ2

E .

Compatibilità statistica ⇒ favore a RRP; incompatibilità ⇒ favore
a GR standard/DSR/GRb.

Test 3 (soglie cinematiche). Scansioni near-threshold in colli-
der o nei flussi UHECR: presenza di shift ∝ E/Ep ⇒ favore a DSR;
assenza (entro limiti) ⇒ favore a RRP/dSSR.

Conclusioni comparative

• RRP prevede nessuna dispersione di propagazione per campi
massless e introduce solo effetti di sorgente via T (eff)

µν = Tµν/γ
2
E ,

con firme scalari {ΓE ,
√

ΓE ,Γ2
E} su (h, f, EGW).

• DSR produce dispersione (tipicamente lineare o a bassa po-
tenza in E/Ep) e soglie modificate già a O(E/Ep); segno forte:
ritardi ToF energia-dipendenti.

• Gravity’s Rainbow codifica dispersione geometrica attraver-
so f, g, con segnali analoghi a DSR ma legati a scelte funzionali
metriche; segno forte: c(E) = cg/f .

• dSSR mantiene v = c localmente e differisce solo per effetti
geometrici globali ∝ 1/l; nessuna dispersione o soglie anomale
su scale non cosmologiche.
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In sintesi, tempo-di-volo e triplice firma GW consentono un con-
fronto diretto e falsificabile tra RRP, DSR, GRb e dSSR: la presenza
sistematica di dispersione seleziona DSR/GRb; la sua assenza, unita
a firme di sorgente ∝ ΓE , discrimina a favore della RRP rispetto a
dSSR.

8. Discussione e prospettive
In questa sezione mettiamo a confronto sistematico la Relatività
Ristretta Planckiana (RRP) con tre famiglie di estensioni relativisti-
che ampiamente discusse in letteratura — la Relatività a due scale
invarianti (DSR), la Gravity’s Rainbow e la Relatività Speciale de
Sitter (dSSR) — e con il programma di gravità quantistica a loop
(LQG). Lo scopo è chiarire somiglianze strutturali, differenze con-
cettuali e connessioni operative, nonché derivare criteri osservativi
che separino in modo netto le predizioni della RRP da quelle dei
modelli concorrenti.

8.1 Confronto sistematico con DSR, Gravity’s
Rainbow, de Sitter Relativity e Loop Quantum
Gravity
Assiomi di riferimento della RRP. Ricapitoliamo il nucleo as-
siomatico della RRP: esiste una scala energetica invariante Ep
e la cinematica conserva l’algebra di Lorentz, con parametro
adimensionale βE ≡ E/Ep e fattore

γE = 1√
1− β2

E

, 0 ≤ βE < 1.

L’intervallo planckiano

s2
E = (c t)2 − ∥x⃗∥2

è invariante e la struttura di gruppo è isomorfa a SO(1, 3). La
dinamica estesa si realizza sostituendo il tensore materia con

T (eff)
µν = 1

γ2
E

Tµν ,
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preservando le identità di Bianchi e quindi la consistenza variazio-
nale. Per campi massless in vuoto la velocità di fase e di gruppo
coincide con c.

8.1.1 DSR (Doubly Special Relativity) vs RRP

Cinematica e dispersione. In DSR si postula l’invarianza si-
multanea di c e di una scala Lp (o Ep) deformando le trasformazioni
di Lorentz nello spazio degli impulsi. Una classe ampia di relazioni
di dispersione è del tipo

E2 − c2p2 −m2c4 + f(E, p;Lp) = 0,

con correzioni, a bassa energia,

f(E, p;Lp) ≃ L̃p c p
2E + · · · .

Ne discende, per stati massless, una velocità di gruppo energia-
dipendente

vg(E) = ∂E

∂p
≃ c

(
1− κ E

Ep
+ · · ·

)
,

con κ dipendente dal modello.

Trasformazioni e “soccer-ball problem”. I boost DSR so-
no non lineari e realizzano un’algebra deformata (tipicamente κ-
Poincaré). Le leggi di composizione di energia e impulso non sono
univoche e, nella forma più semplice, inducono il cosiddetto pro-
blema “soccer-ball”: la deformazione microscopica non si riassorbe
automaticamente per stati composti macroscopici.

RRP: teoremi di base in confronto. Teorema 8.1 (in-
varianza e non-dispersione in vuoto). Sia βE = E/Ep. Le
trasformazioni

Λ(ϕE) =
(
rr

coshϕE − sinhϕE
− sinhϕE coshϕE

)
, tanhϕE = βE ,
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lasciando invariante s2
E , implicano per un’onda piana massless

ω = ck che la velocità di gruppo in vuoto è

vg = ∂ω

∂k
= c.

Dimostrazione. L’invarianza di s2
E assicura l’isotropia del cono di

luce ω = ck in tutti i sistemi inerziali. Poiché la RRP non deforma
la relazione di dispersione dei campi liberi in vuoto, ω(k) resta
lineare. Quindi vg = ∂ω/∂k = c. □

Teorema 8.2 (assenza di “soccer-ball problem” in RRP).
Sia βi = Ei/Ep e si definisca la composizione energetica per sistemi
composti con la legge

β12 = β1 + β2

1 + β1β2
.

Allora 0 ≤ β12 < 1 se 0 ≤ β1, β2 < 1, e per N composti β1···N < 1
per induzione.

Dimostrazione. La funzione artanh linearizza la composizione:
definendo ϕi = artanh(βi), si ha

ϕ12 = ϕ1 + ϕ2, β12 = tanh(ϕ12),

e quindi β12 < 1. L’estensione a N segue per induzione additiva
sulla rapidità. □

Implicazioni. A differenza della DSR generica, la RRP mantiene
vg = c in vuoto ed evita problemi di composizione per sistemi estesi,
pur introducendo una nuova scala invariante Ep. I test di tempo-
di-volo su scale astrofisiche sono quindi nulli a livello leading-order
per la propagazione libera, e i segnali distintivi della RRP risiedono
nella sorgente (T (eff)

µν ) e nel clock (γE).

8.1.2 Gravity’s Rainbow vs RRP

Metrica “arcobaleno”. In Gravity’s Rainbow si postula una
famiglia di metriche energia-dipendenti

ds2(E) = − dt2

f2(E/EPl)
+ dx⃗ 2

g2(E/EPl)
,
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con

lim
E/EP l→0

f = 1, lim
E/EP l→0

g = 1.

La velocità dei massless è in generale

c(E) = g(E/EPl)
f(E/EPl)

c,

e può essere energia-dipendente.
Proposizione 8.3 (condizione di riduzione a RR). Se

c(E) = c per ogni E e E/EPl ≪ 1, allora f(E) ≡ g(E) in un
intorno di E = 0.

Dimostrazione. Dalla definizione c(E) = g
f c, la condizione

c(E) = c implica g(E) = f(E). Per continuità delle funzioni
adimensionali, questa identità vale in un intorno di E = 0. □

Proposizione 8.4 (non equivalenza globale con RRP). La
RRP, con metrica universale e vg = c in vuoto, è globalmente non
equivalente a Gravity’s Rainbow salvo il caso banale f ≡ g ≡ 1.

Dimostrazione. In RRP l’intervallo s2
E è universale e non dipende

da E. Se esistesse un’uguaglianza con una metrica arcobaleno non
banale, si avrebbe una E-dipendenza dello spazio-tempo percepito
dai campi liberi, in contraddizione con la non-dispersione in vuoto
(Teorema 8.1). L’unico caso compatibile è f ≡ g ≡ 1. □

Dinamica ed osservabili. Rainbow introduce anche G(E) e
Λ(E), mentre la RRP mantiene G e Λ costanti e “ripesa” le
sorgenti con 1/γ2

E . In cosmologia, Rainbow sposta l’orizzonte
tramite c(E), mentre la RRP regolarizza i termini materia con
ρeff = ρ/γ2

E , ammettendo un bounce senza introdurre dispersione
in propagazione.

8.1.3 de Sitter Special Relativity (dSSR) vs RRP

Gruppo e costante universale. La dSSR sostituisce Poincaré
con SO(4, 1) e introduce una lunghezza l =

√
3/Λ come costante

universale. La metrica stereografica è

gµν = Ω2(x) ηµν , Ω(x) = 1
1− σ2/4l2 .
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Il limite Λ→ 0 (l→∞) recupera Minkowski.
Proposizione 8.5 (commutatività dei limiti deboli). Nel

dominio congiunto E/Ep ≪ 1 e σ2/l2 ≪ 1, i limiti E/Ep → 0
(RRP→RR) e Λ→ 0 (dSSR→RR) commutano all’ordine più basso:

lim
Λ→0

lim
E/Ep→0

= lim
E/Ep→0

lim
Λ→0

.

Dimostrazione. Entrambe le estensioni riducono le correzioni a
termini quadratici piccoli (β2

E per RRP, σ2/l2 per dSSR). All’ordine
più basso, le perturbazioni si sommano linearmente e i due limiti
eliminano indipendentemente i rispettivi correttivi, restituendo la
RR. □

Differenze operative. La dSSR è una deformazione geometrica
controllata da Λ (scala cosmologica), la RRP è una estensione
energetica controllata da Ep (scala ultravioletta). La prima ha
firme soprattutto su scale cosmologiche, la seconda su processi ad
altissima energia e in forti campi. Le due estensioni sono logicamente
ortogonali e potenzialmente componibili in un’analisi a doppia scala
(Λ, Ep).

8.1.4 Loop Quantum Gravity (LQG) vs RRP

Natura della teoria. La LQG è una quantizzazione canonica
background-independent della gravità con variabili di Ashtekar,
stati di rete di spin e dinamica a vincoli (Gauss, diffeomorfismi
spaziali, Hamiltoniano). La RRP è una estensione classica della
relatività con una scala energetica invariante e una dinamica efficace
T

(eff)
µν = Tµν/γ

2
E .

Confronto di equazioni efficaci in cosmologia. LQC (ridu-
zione omogenea-isotropa di LQG) suggerisce equazioni efficaci del
tipo

H2 = 8πG
3 ρ

(
1− ρ

ρc

)
+ · · · ,
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con ρc vicino alla densità di Planck. La RRP propone

H2 = 8πG
3

ρ

γ2
E

− kc2

a2 + Λc2

3 , γE = 1√
1− (E/Ep)2

.

In entrambi i casi l’effetto netto ad alta energia è una saturazione
del contributo gravitante della materia, che evita la singolarità
(amin > 0), sebbene l’origine sia diversa: ρ-correzioni quantistiche
in LQC, ripeso energetico universale in RRP.

Osservazioni. La LQG è una proposta di quantizzazione della
gravità con propri osservabili (spettri discreti di area e volume),
mentre la RRP è una estensione classica minimalmente invasiva.
Le due prospettive sono complementari: i vincoli osservativi che
selezionano γE in RRP possono fornire condizioni al contorno per
efficaci semiclassici in LQG/LQC; viceversa, analisi di LQG sul
regime di Planck possono motivare dipendenze γE(E) più micro-
fondate.

8.1.5 Tabella di confronto sintetico

r

Caratteristica RRP DSR Rainbow dSSR

Costante nuova Ep Lp (o Ep) EP l in f, g Λ
(l =

√
3/Λ)

Gruppo SO(1, 3) intatto κ-Poincaré
(deformato)

dipendente da E SO(4, 1)

Dispersione massless (vuo-
to)

ω = ck ω(k) deformata c(E) =
g

f
c ω = ck

Origine effetti γE , T
(eff)
µν boost non lineari metrica gµν(E) curvatura costante

Bounce cosmico ρ/γ2
E modello

dipendente
c(E), G(E), Λ(E) curvatura Λ

Problemi noti — soccer-ball,
ambiguità

non-località,
princ. d’equivalenza

osservabilità
debole

8.1.6 Prospettive sperimentali discriminatorie

Propagazione libera massless. La RRP prevede

∆tTOF ≃ 0 (vuoto, leading),
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mentre molte realizzazioni DSR/Rainbow implicano ∆tTOF ∝
(E/Ep)L/c oppure ∝ (E/Ep)2 L/c. Misure null su ∆t favoriscono
la RRP e la dSSR rispetto a schemi con c(E) ̸= c.

Settore di sorgente. La RRP modifica ampiezze e frequenze
alla sorgente tramite

T (eff)
µν = Tµν

γ2
E

, fpeak 7→
√

ΓE fpeak, ΓE ≡ γ−2
E ,

mentre DSR/Rainbow tipicamente predicono segnali in propa-
gazione. La combinazione (fpeak, h, EGW) in transienti compatti
permette di isolare ΓE .

Cinematica delle soglie. In RRP le soglie sono influenzate da
masse efficaci

meff = mγE ,

con correzioni O
(
(E/Ep)2) ultra-piccole a energie di laborato-

rio, mentre in DSR le leggi di conservazione possono risultare
debolmente modificate già a primo ordine in Lp.

8.1.7 Conclusioni del confronto

La RRP emerge come estensione speculare della Relatività Ristretta:
conserva il gruppo SO(1, 3), postula una scala energetica invariante
Ep e sposta le firme fisiche dai fenomeni di propagazione (spesso
esclusi sperimentalmente) a quelli di sorgente e di clock. DSR e
Gravity’s Rainbow esplorano deformazioni cinematiche e metriche
che, pur eleganti algebricamente, incontrano tensioni empiriche e
concettuali (dispersione lineare/quadratica, principio di equivalenza,
non-località). La dSSR introduce la costante Λ su basi geometriche,
con effetti su scale cosmologiche; la LQG fornisce un quadro quanti-
stico background-independent, potenzialmente complementare alla
RRP sul piano efficace.

In prospettiva, una fenomenologia a doppia scala (Ep,Λ) che
combini RRP e dSSR, insieme a vincoli da transienti compatti e
cosmologia di precisione, rappresenta il banco di prova più pro-
mettente per discriminare in modo definitivo fra queste estensioni
relativistiche.
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8.2 Implicazioni concettuali della dualità c↔
Ep

Questa sezione chiarisce il significato logico della sostituzione strut-
turale che porta dalla Relatività Ristretta standard, fondata sull’in-
varianza della velocità della luce, alla Relatività Ristretta Planc-
kiana, in cui il ruolo di quantità invariante è assunto da una scala
energetica universale. La tesi è che esiste un dizionario matematico
coerente che mappa le affermazioni cinematiche della relatività
einsteiniana nel dominio delle energie attraverso la corrispondenza
β ≡ v/c←→ βE ≡ E/Ep e γ ←→ γE , mantenendo invariati grup-
po, causalità e struttura di spazio–tempo per i campi massless e
spostando gli effetti nuovi nel settore dei clock e delle sorgenti.

Dizionario di dualità. Il parallelismo è governato dalle due
quantità adimensionali β = v

c e βE = E
Ep

, con fattori di Lorentz γ =
1√

1−β2
e γE = 1√

1−β2
E

. Le trasformazioni planckiane si ottengono
dalla forma canonica di Lorentz mediante la sostituzione β 7→ βE e
producono la stessa legge di composizione in rapidità ϕ = artanh β,
ϕE = artanh βE , ossia ϕ12 = ϕ1 + ϕ2 e ϕE,12 = ϕE,1 + ϕE,2. Il cono
di luce resta definito da s2 = (c t)2 − ∥x⃗∥2 e per curve nulle la
relazione ω = c k rimane valida, con velocità di fase e di gruppo
vph = vgr = c.

Proposizione 1 (isomorfismo cinematica–energia). Sia
Λ(ϕ) ∈ SO+(1, 3) una trasformazione di boost con rapidità ϕ. La
mappa Φ : ϕ 7→ ϕE definita da tanhϕ = v

c e tanhϕE = E
Ep

realizza
un isomorfismo di gruppo tra il sottogruppo dei boost standard e il
sottogruppo “energetico” generato da ϕE : si ha Λ(ϕ2)Λ(ϕ1) = Λ(ϕ1+
ϕ2) e, in modo speculare, BE(ϕE,2)BE(ϕE,1) = BE(ϕE,1 + ϕE,2).

Dimostrazione. Segue dall’additività delle rapidità e dall’identità
tanh(α + β) = tanhα ⊕ tanh β con ⊕ la legge frazioni-lineare
(x⊕ y) = x+y

1+xy . Poiché tanh è biettiva su (−1, 1), la corrispondenza
è un isomorfismo. □

Corollario (bound e chiusura). La condizione |β| < 1 implica
γ < ∞; la condizione |βE | < 1 implica γE < ∞. La legge di
composizione β12 = β1+β2

1+β1β2
ha il gemello βE,12 = βE,1+βE,2

1+βE,1βE,2
. Ne
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segue la stabilità del bound |v| < c e, specularmente, |E| < Ep
sotto composizione.

Proposizione 2 (invarianza dell’intervallo e non-
dispersione massless). Nel settore dei campi privi di massa la con-
dizione di nullità s2 = 0 implica ω = c k. La dualità non altera tale
relazione perché agisce sui parametri di boost tramite β 7→ βE sen-
za modificare la metrica piatta ηµν = diag(1,−1,−1,−1). Quindi
vph = ω

k = c e vgr = ∂ω
∂k = c.

Dimostrazione. Dalla definizione di curva nulla e dalla linearità
della dispersione in vuoto segue immediatamente l’uguaglianza delle
due velocità alla costante c. □

Clock planckiano e dualità delle dilatazioni temporali. Nel
dominio standard la dilatazione temporale è dτ = dt

γ . Nel dominio
energetico la dinamica introduce un “clock” fisico dτphys = γE dτgeo
con dτgeo = dt

γv
. La simmetria concettuale è: la velocità limita la

crescita di γ, l’energia limita la crescita di γE ; nel limite β → 1−

il tempo di coordinate si dilata rispetto al proprio, mentre nel
limite βE → 1− il tempo proprio fisico si “accelera” rispetto a
quello geometrico. In entrambi i casi la quantità invariante (c
oppure Ep) emerge come costante che satura il rispettivo parametro
adimensionale.

Principio di corrispondenza e recupero di basse energie.
Il dizionario v

c ↔
E
Ep

rispetta il principio di corrispondenza: per
|v| ≪ c si ha γ ≃ 1+ 1

2
v2

c2 , mentre per |E| ≪ Ep si ha γE ≃ 1+ 1
2
E2

E2
p
.

In particolare, per ϵ ≡ E/Ep piccolo, tutte le quantità cinemati-
che e dinamiche della teoria planckiana si riducono alle rispettive
espressioni relativistiche classiche con correzioni quadratiche in ϵ.

Causalità, gruppi e assenza di paradossi cinetici. Poiché
l’algebra di Lie resta so(1, 3) con generatori Ji e Ki che soddisfano
[Ji, Jj ] = ϵijkJk, [Ji, Kj ] = ϵijkKk, [Ki, Kj ] = −ϵijkJk, l’assetto
di causalità e il cono di luce non sono intaccati dalla dualità;
ciò assicura l’assenza di paradossi cinetici nella composizione di
trasformazioni non collineari, dove compare la rotazione di Wigner
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con la consueta struttura SO(3). La dualità agisce sui parametri di
boost senza alterare né l’invariante s2 né la chiusura del gruppo.

Energia invariante come costante “universale” complemen-
tare. L’introduzione di Ep come costante universale complemen-
tare a c realizza una forma di complementarità UV/IR: c regola i
rapporti spaziali–temporali e il limite sulle velocità, Ep regola la
“velocità” dei processi di clock e un limite superiore sull’energia di
stato che entra nei fattori di scala dinamici. Questa duplicità pre-
serva la struttura minkowskiana per la propagazione libera e sposta
i nuovi effetti in quantità direttamente collegate alla misura del
tempo proprio e alla risposta delle sorgenti, mantenendo invariati i
test di propagazione a grande distanza per campi massless.

Conclusione. La dualità c↔ Ep fornisce un principio organiz-
zatore semplice e potente: tutte le costruzioni cinematiche della
relatività ristretta si riproducono sostituendo v

c con E
Ep

a livello
di parametri di boost e fattori di Lorentz, mentre l’invariante geo-
metrico, il gruppo di simmetria e la propagazione dei campi senza
massa restano identici al caso einsteiniano. Le differenze fisicamente
rilevanti emergono nei clock e nelle sorgenti attraverso γE , rispet-
tando corrispondenza, causalità e chiusura di gruppo, e delineando
un quadro concettuale privo di paradossi e direttamente agganciato
a osservabili operativi.

8.3 Collegamento con la Relatività Generale
Planckiana
Scopo di questo paragrafo (solo accennato qui) è mostrare il dizio-
nario concettuale e matematico che collega la Relatività Ristretta
Planckiana (RRP), formulata su spazio-tempo piatto con intervallo
planckiano invariante, alla sua estensione geometrica in spazio-
tempo curvo, la Relatività Generale Planckiana (RGP). L’idea-
chiave è promuovere la dipendenza energetica globale della RRP,
codificata in γE(ϵ) con ϵ ≡ E/Ep, a un campo (o parametro) ϵ(x)
localmente definito su una varietà lorentziana (M, g), preservando
l’invarianza locale di Lorentz e le identità di Bianchi.
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Dizionario RRP → RGP (schema minimale).

• Metrica di Minkowski ηµν −→ metrica dinamica gµν(x).

• Parametro costante ϵ = E/Ep −→ profilo locale ϵ(x) ∈ [0, 1).

• Fattore di clock γE(ϵ) −→ ripesatura universale della materia
tramite f(ϵ) ≡ γE(ϵ)−2.

• Invarianza dell’intervallo planckiano s2
E = (c t)2 − ∥x⃗∥2 −→

propagazione locale su coni di luce di gµν con campi massless
non dispersi (a livello cinematico): ω = c k.

Tempo proprio e tetrodi. Il fattore di clock della RRP
generalizza a spazio-tempo curvo come

dτphys = γE
(
ϵ(x)

)
dτgeo, dτ 2

geo = 1
c2 gµν(x) dxµdxν .

Equivalentemente, in una base tetradica eaµ(x) (con gµν =
ηab e

a
µe
b
ν) la misura fisica dei tempi è riscalata da γE , mentre

la cinematica dei campi massless resta ancorata al cono nullo di
gµν (quindi nessuna dispersione di vuoto è introdotta dalla sola
sostituzione di clock).

Azione efficace e sorgenti. Una realizzazione minimale
del collegamento è ottenuta sostituendo, nel settore materia,
S(eff)

m [g, ψ; ϵ] =
∫

M
d4x
√
−g f

(
ϵ(x)

)
Lm(g, ψ), f(ϵ) ≡ γE(ϵ)−2 = 1− ϵ2

e mantenendo l’azione gravitazionale di Einstein–Hilbert. La
variazione rispetto a gµν produce un tensore energia–impulso
efficace

T (eff)
µν = f

(
ϵ(x)

)
Tµν ,

così che le equazioni di campo planckiane, nella forma più semplice
(con ϵ trattato come dato esterno), sono

Gµν + Λ gµν = 8πG
c4 T (eff)

µν = 8πG
c4

1
γE(ϵ)2 Tµν .

Se ϵ = const., si recupera direttamente la prescrizione RRP T
(eff)
µν =

Tµν/γ
2
E .
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Identità di Bianchi e consistenza locale. Poiché∇µGµν = 0,
segue

∇µT (eff)
µν = 0 ⇒ ∇µTµν = −Tµν ∇µln f(ϵ) ,

ossia uno scambio locale di quattro–momento tra settore materia e
settore planckiano (se ϵ = ϵ(x) varia), coerente con il principio di
conservazione totale. Nel caso ϵ = const. si ha ∇µTµν = 0.

Proposizione (limite di compatibilità RRP → RGP). Sia
una soluzione inerziale RRP su ηµν con |βE | < 1, βE ≡ E/Ep, e
sia ϵ = const.. Allora la soluzione RGP corrispondente è ottenuta
sostituendo ηµν 7→ gµν e Tµν 7→ Tµν/γ

2
E , lasciando invariata la

propagazione di campi massless in vuoto e riscalando le grandezze
temporali misurate da dτphys = γE dτgeo.

Dimostrazione (schizzo). La sostituzione di cui sopra soddisfa le
equazioni di campo con sorgente efficace e rispetta ∇µT (eff)

µν = 0. La
nullità dell’intervallo per campi massless si conserva, quindi ω = ck
localmente. □

Osservazioni operative (rinvio a lavoro dedicato).

• In cosmologia omogenea–isotropa, scegliendo ϵ = ϵ(t) o ϵ =
const., le equazioni efficaci si riducono a una ripesatura ρ 7→
ρ/γ2

E e p 7→ p/γ2
E , con conseguente attenuazione del contributo

gravitante della materia ad alte energie.

• In geometrie stazionarie e sferiche, la massa attiva efficace
scala come Meff = M/γ2

E , lasciando inalterata la struttura di
vuoto esterna ma modificando i parametri caratteristici alla
sorgente.

• Una formulazione completamente covariante può promuove-
re ϵ a campo scalare con cinetica e potenziale, mantenendo
l’invarianza di Lorentz locale e la ben–posta variazionale.

Sintesi. La RGP eredita dalla RRP la dualità tra clock (γE) e
sorgente (T (eff)

µν ), collocandola in un quadro geometrico pienamente
covariante: i campi massless propagano localmente su (M, g) senza
dispersione di vuoto, mentre gli effetti planckiani emergono nel
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settore della materia/curvatura tramite la ripesatura universale
Tµν 7→ Tµν/γ

2
E (o, in formulazioni equivalenti, tramite una metrica

effettiva nel settore temporale). Le deduzioni complete (equazioni
variazionali, stabilità e test) sono sviluppate nell’articolo dedicato
alla Relatività Generale Planckiana.

8.4 Aperture verso una unificazione con la
meccanica quantistica
Obiettivo e criteri. Una formulazione quantistica compatibile
con la Relatività Ristretta Planckiana (RRP) deve: (i) preservare
la causalità locale (coni di luce invarianti), (ii) mantenere l’unita-
rietà (positività del generatore temporale) e (iii) ridursi alla teoria
quantistica standard nel limite ϵ ≡ E/Ep → 0. In RRP l’invariante
è l’intervallo planckiano s2

E = (c t)2 − ∥x⃗∥2 e la struttura di gruppo
resta isomorfa a SO(1, 3); gli effetti planckiani entrano attraverso
il clock energetico via il fattore γE(ϵ) = (1− ϵ2)−1/2, senza defor-
mare i coni nulli. Questo consente una quantizzazione che conserva
microcausalità e analiticità di scattering, spostando le novità nel
settore di sorgente/clock.

(A) Dalla Hamilton–Jacobi planckiana alla meccanica
quantistica a una particella. Nel quadro RRP la funzione azione
S(x) per una particella libera soddisfa

1
c2 (∂tS)2 − ∥∇S∥2 = (meff c)2, meff ≡ mγE(ϵ),

con m massa a riposo e meff massa efficace di clock. L’elevazione
canonica pµ 7→ p̂µ ≡ iℏ∂µ produce l’equazione di Klein–Gordon
planckiana (

□ + m2
effc

2

ℏ2

)
ϕ = 0, □ ≡ 1

c2∂
2
t −∇2,

mentre per fermioni si ottiene l’equazione di Dirac

(iℏγµ∂µ −meffc)ψ = 0.
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La relazione di dispersione resta ω2 = c2k2 + (meffc
2/ℏ)2 e, per

stati massless, ω = ck (nessuna dispersione). Nel limite ϵ→ 0 segue
meff → m e si recuperano le equazioni standard.

(B) Azione di worldline e integrale
di Feynman. L’azione di particella in RRP

S[x⃗(t)] = −mc2
∫
γE(ϵ)

√
1− ∥

˙⃗x∥2

c2 dt = −mc
∫
dτphys, dτphys ≡ γE dτgeo,

definisce il propagatore come somma sui cammini

K(xf , xi) =
∫
Dx exp

{
i

ℏ
S[x]

}
.

Se γE è costante nel settore considerato (stati stazionari), il kernel
coincide con quello standard a massa meff . Se γE = γE(x) varia
lentamente, un’espansione WKB ordina le correzioni in ∇γE senza
alterare i coni nulli, preservando microcausalità.

(C) Teoria dei campi libera e interazioni minime. Per un
campo scalare reale ϕ e un campo di Dirac ψ su spazio piatto:

L(ϕ)
0 = 1

2∂µϕ ∂
µϕ− 1

2
(
meffc
ℏ
)2
ϕ2, L(ψ)

0 = ψ̄ (iℏγµ∂µ −meffc)ψ.

L’accoppiamento elettromagnetico minimale ∂µ → Dµ = ∂µ + iq
ℏAµ

resta inalterato; le identità di Ward–Takahashi seguono come in
QED perché la corrente di Noether è invariata (il cono di luce non
cambia). Il tensore energia–impulso canonico è quello standard con
m→ meff . Microcausalità: [ϕ(x), ϕ(y)] = 0 per separazione spaceli-
ke poiché il propagatore di Pauli–Jordan dipende solo dall’invariante
(x− y)2.

(D) Scattering, analiticità e LSZ. Il teorema LSZ si applica
immutato: gli stati asintotici sono definiti sulle shell p2 = m2

effc
2. Le

funzioni di Green hanno la stessa struttura analitica di polo/taglio,
con i poli fisici traslati in meff . L’assenza di dispersione per campi
massless garantisce che la regione di Jost e i domini di microcausalità
coincidano con quelli standard; l’unitarietà della matrice S segue
dalla conservazione della corrente di probabilità.

(E) Promozione quantistica del γE: campo planckiano.
Una via sistematica alla dinamica quantistica del clock è introdurre
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un campo scalare ε(x) ∈ [0, 1) con γE(ε) = (1−ε2)−1/2 e lagrangiana
canonica

Lε = κ
2 ∂µε ∂

µε− U(ε),

accoppiato alla materia tramite un peso f(ε) =
γE(ε)−2 = 1 − ε2. A livello efficace piatto,
Lint = − λ

2 ε
2 Φ2 (scalari) oppure Lint = −λ ε2 ψ̄ψ (fermioni),

riproduce m2
eff ≃ m2[1 + ⟨ε2⟩ + · · ·

]
. Stabilità richiede κ > 0 e

U ′′(ε0) ≥ 0; l’assenza di ghost e tachioni garantisce ben–posto e
unitarietà. Nel limite ε→ 0 la teoria torna esattamente standard.

(F) Principio di indeterminazione e “clock” planckia-
no. Poiché i coni nulli non sono deformati, le commutazioni
[x̂i, p̂j ] = iℏδij restano intatte. La risoluzione temporale misurata
da un clock planckiano è dτphys = γE dτgeo; per processi controllati
sperimentalmente il bound operativo assume la forma

∆τphys ∆E ≳ ℏ
2 ⟨γE⟩,

mostrando che a parità di ∆E un clock più “veloce” (γE > 1)
degrada la risoluzione in τphys in modo controllato ma non introduce
non–linearità nella struttura di Hilbert.

(G) Rinormalizzabilità ed effettività. A energie ϵ≪ 1 la so-
stituzione m→ meff non altera il conteggio di potenze: QED/QCD
restano rinormalizzabili. A energie prossime a Ep la descrizione
è effettiva: l’espansione in ϵ produce operatori locali soppressi da
potenze di E−1

p , con coefficiente controllato da ∇γE quando il clock
varia spazialmente. L’unitarietà parziale–onda è preservata finché
γE <∞ (|ϵ| < 1).

(H) Sintesi operativa.

• Propagazione: nessuna dispersione per campi massless (ω =
ck); microcausalità e coni di luce invarianti.

• Spettri: per campi massivi, shift m → meff = mγE induce
correzioni a livelli legati O(ϵ2).

• Scattering: LSZ e analiticità invariate; poli a p2 = m2
effc

2.
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• Clock quantistico: un campo ε(x) implementa dinamicamente
γE mantenendo stabilità (κ > 0, U ′′ ≥ 0) e conservazione di
corrente.

Queste aperture forniscono un ponte coerente fra la struttura cineti-
ca della RRP e la meccanica quantistica/QFT standard: la causalità
e l’unitarietà sono preservate, mentre gli effetti planckiani emergono
come riscalamenti di clock/massa e, se resi dinamici, come una
debole nuova interazione scalare universalmente accoppiata. Nel
limite ϵ→ 0 ogni costruzione qui esposta si riduce senza ambiguità
alla teoria quantistica convenzionale.
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Appendici

A Calcoli variazionali dettagliati

Convenzioni. Firma metrica (+,−,−,−), connessione di Levi-
Civita∇µ, d’Alembertiano □ ≡ gµν∇µ∇ν . Poniamo cE = c salvo di-
versa indicazione. La costante di Planck energetica è Ep =

√
ℏc5/G.

Introduciamo un campo scalare adimensionale locale ϵ(x) ∈ [0, 1) e
il fattore planckiano

γE(ϵ) ≡ 1√
1− ϵ2

, f(ϵ) ≡ 1
γE(ϵ)2 = 1− ϵ2.

Il settore materia classico è descritto da una lagrangiana Lm(g, ψ)
(dipendenza implicita dai campi ψ).

A.1 Azione totale e termini al bordo

Si consideri l’azione

S[g, ϵ, ψ] = Sg + Sϵ + S(eff)
m + SGHY,

dove

Sg = c3

16πG

∫
d4x
√
−g R, SGHY = c3

8πG

∫
∂M

d3y
√
|h|K,

Sϵ =
∫
d4x
√
−g

[
−κ2 g

µν(∇µϵ)(∇νϵ)− U(ϵ)
]
, κ > 0,

S(eff)
m =

∫
d4x
√
−g f(ϵ)Lm(g, ψ).

Il termine di Gibbons–Hawking–York SGHY rende ben posto il
problema variazionale con frontiera a metrica fissata.
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A.2 Identità variazionali di base
Per una variazione arbitraria δgµν valgono

δ
√
−g = −1

2
√
−g gµν δgµν , δR = (Rµν + gµν□−∇µ∇ν) δgµν .

Per il campo scalare

δ
[
(∇ϵ)2

]
= 2 (∇µϵ)(∇νϵ) δgµν − 2 (□ϵ) δϵ+ divergenza.

A.3 Variazione rispetto alla metrica e tensori
energia–impulso

Variare S rispetto a gµν (con δϵ = 0 = δψ) e usare SGHY per
cancellare i termini di bordo che provengono da δR. Si ottiene

c3

16πG Gµν = 1
2 T

(ϵ)
µν + 1

2 f(ϵ)T (m)
µν ,

ossia

Gµν = 8πG
c4

[
T (ϵ)
µν + f(ϵ)T (m)

µν

]
.

Qui
T (m)
µν ≡ − 2√

−g
δ

δgµν

(∫
d4x
√
−g Lm

)
, T (ϵ)

µν ≡ κ (∇µϵ)(∇νϵ)− gµν
[
κ

2 (∇ϵ)2 + U(ϵ)
]
.

Poiché f(ϵ) è uno scalare indipendente da gµν , la sua presenza in
S

(eff)
m produce solo il prefattore f(ϵ) davanti a T (m)

µν .

A.4 Variazione rispetto a epsilon: equazione di
campo e sorgente di materia

La variazione di S rispetto a ϵ (a metrica e ψ fissati) fornisce
δSϵ =

∫
d4x
√
−g

[
− κ□ϵ− U ′(ϵ)

]
δϵ, δS(eff)

m =
∫
d4x
√
−g f ′(ϵ)Lm δϵ,

da cui

κ□ϵ − U ′(ϵ) + f ′(ϵ)Lm = 0

con f ′(ϵ) = −2ϵ. Questa equazione mostra l’accoppiamento non
minimale tra ϵ e la lagrangiana di materia.
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A.5 Conservazione totale e corrente di scambio

A.5 Conservazione totale e corrente di scambio
La diffeomorfismo-invarianza, assieme alle identità di Bianchi
∇µGµν = 0, implica

∇µ
[
T (ϵ)
µν + f(ϵ)T (m)

µν

]
= 0.

Usando l’equazione di ϵ si trova

∇µT (ϵ)
µν =

[
κ□ϵ− U ′(ϵ)

]
∇νϵ = −f ′(ϵ)Lm∇νϵ,

∇µ
[
f(ϵ)T (m)

µν

]
= f(ϵ)∇µT (m)

µν + f ′(ϵ) (∇µϵ)T (m)
µν .

Se il settore materia è minimamente accoppiato (quindi ∇µT (m)
µν = 0

in assenza di accoppiamenti aggiuntivi), allora

∇µT (ϵ)
µν = −Qν , ∇µ

[
f T (m)

µν

]
= +Qν , Qν ≡ f ′(ϵ)Lm∇νϵ,

ossia lo scambio di 4-impulso tra ϵ e materia è controllato da Qν .
La conservazione totale è sempre soddisfatta.

A.6 Limite epsilon costante e forma T (eff)
µν

Se ϵ = ϵ0 è costante, ∇ϵ = 0 e □ϵ = 0; l’equazione per ϵ si riduce
al vincolo algebrico

−U ′(ϵ0) + f ′(ϵ0)Lm = 0.

Il tensore del campo scalare diventa T
(ϵ)
µν = −U(ϵ0) gµν , che si

riassorbe in una costante cosmologica efficace Λeff = Λ + 8πG
c4 U(ϵ0).

Le equazioni di campo assumono la forma

Gµν + Λeff gµν = 8πG
c4

[
f(ϵ0)T (m)

µν

]
.

Scrivendo f(ϵ0) = γE(ϵ0)−2 si identifica

T (eff)
µν = 1

γE(ϵ0)2 T
(m)
µν ,

cioè la sostituzione Tµν 7→ T
(eff)
µν usata nel corpo principale.
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A Calcoli variazionali dettagliati

A.7 Forma hamiltoniana e densità di energia efficace
(sketch)

In un 3 + 1–split ADM con metrica spaziale hij , lapse N e shift N i,
la densità hamiltoniana totale (ignorando vincoli secondari) legge
schematicamente

H = HGR[hij , πij ] +Hϵ[ϵ, πϵ] +N f(ϵ) ρm +N i f(ϵ) jm
i ,

dove ρm e jm
i sono, rispettivamente, densità di energia e corrente

di materia. Ne segue che, al livello dei vincoli, la sorgente efficace è
ridotta di f(ϵ) = 1− ϵ2.

A.8 Linearizzazione: equazioni di Friedmann modifi-
cate

Per background FLRW, ds2 = c2dt2−a(t)2 dx⃗2, ϵ = ϵ(t) omogeneo, e
fluido perfetto di materia (ρ, p), dalle equazioni di campo precedenti
si ricavano (per κ e U trascurabili a livello di background, o assorbiti
in Λeff)

H2 ≡
(
ȧ

a

)2
= 8πG

3
ρ

γE(ϵ)2 −
kc2

a2 + Λeffc
2

3 ,

ä

a
= −4πG

3
ρ+ 3p/c2

γE(ϵ)2 + Λeffc
2

3 ,

in accordo con le formule usate nella sezione cosmologica
dell’articolo.

A.9 Settore particellare in spaziotempo curvo:
principio d’azione

Per una particella di massa m su worldline xµ(λ), con 4-velocità
uµ = dxµ/dλ, la versione minimale coerente con il clock planckiano
è

Spp = −mc2
∫
dλ γE(ϵ(x))

√
gµν(x)uµuν ,
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A.10 Espansioni perturbative per epsilon piccolo

da cui

pµ ≡
∂L

∂uµ
= −mγE

gµνu
ν√

gαβuαuβ
.

La variazione rispetto a xµ fornisce equazioni geodetiche forzate da
gradienti di γE :

uν∇νuµ = −
(
δµσ −

uµuσ
u2

)
∇σ ln γE(ϵ),

che si riducono alle geodetiche di Levi-Civita quando ∇γE = 0.

A.10 Espansioni perturbative per epsilon piccolo
Per ϵ≪ 1 si hanno

γE(ϵ) = 1 + 1
2ϵ

2 + 3
8ϵ

4 +O(ϵ6), f(ϵ) = 1− ϵ2.

Al primo ordine non banale,

Gµν + Λeffgµν = 8πG
c4

[
T (ϵ)
µν + T (m)

µν − ϵ2 T (m)
µν

]
+O(ϵ4),

da cui l’attenuazione efficace della sorgente ∝ ϵ2.

A.11 Osservazioni su ben-posto, stabilità e PPN
(cenni tecnici)

Per κ > 0 e U ′′(ϵ0) ≥ 0, le perturbazioni scalari δϵ hanno
lagrangiana quadratica canonica

L(2)
ϵ = −κ2 (∂δϵ)2 − 1

2 m
2
ϵ (δϵ)2, m2

ϵ = U ′′(ϵ0) + · · · ,

senza ghost né tachioni. In regime post-newtoniano, definen-
do A(ϵ) =

√
f(ϵ), i parametri PPN effettivi sono (a grandi distanze)

γPPN − 1 ≃ − 2α2
0

1 + α2
0
, βPPN − 1 ≃ 1

2α
2
0β0, α0 ≡

d lnA
dϵ

∣∣∣∣
ϵ0

, β0 ≡
dα

dϵ

∣∣∣∣
ϵ0

.

fornendo condizioni dirette per i test solari (|α0|2 ≪ 10−5, ecc.).

117



B Algebra dei generatori e struttura di simmetria

Sintesi. L’apparato variazionale qui derivato mostra che: (i) le
equazioni di Einstein si modificano con una sorgente totale T (ϵ)

µν +
f(ϵ)T (m)

µν ; (ii) l’equazione del campo ϵ è κ□ϵ−U ′(ϵ) + f ′(ϵ)Lm = 0;
(iii) la conservazione totale è garantita e il trasferimento di 4-
momento è Qν = f ′(ϵ)Lm∇νϵ; (iv) nel limite ϵ = const. si recupera
la forma efficace T (eff)

µν = T
(m)
µν /γ2

E usata nel testo principale, con
una Λeff eventualmente corretta da U(ϵ0).

B Algebra dei generatori e struttura di
simmetria

Convenzioni e obiettivo. L’inter-
vallo planckiano (cinematica 3+1) è
s2
E = (cEt)2 − ∥x∥2, ηµν = diag(1,−1,−1,−1), Xµ = (cEt,x),

ed è preservato da trasformazioni lineari reali Λ tali che

Λ⊤ηΛ = η.

Il gruppo connesso all’identità di tutte tali trasformazioni è isomor-
fo al gruppo di Lorentz proprio e ortocrono SO+(1, 3). In questa
Appendice costruiamo rigorosamente la sua algebra di Lie, i gene-
ratori infinitesimi (rotazioni J e boost energetici K), i Casimir,
le decomposizioni su(2)⊕ su(2), la rappresentazione SL(2,C) e la
classificazione dei little groups. Tutte le identità sono indipendenti
dalla specifica interpretazione planckiana del parametro di boost
βE = E/Ep (con |βE | < 1) e coincidono strutturalmente con la
cinematica lorentziana standard.

Algebra infinitesima da Λ⊤η Λ = η. Sia Λ(ε) = ⊮+εG+O(ε2)
una curva di gruppo con Λ(0) = ⊮. La condizione di invarianza
implica, a primo ordine in ε,

(⊮ + εG)⊤η (⊮ + εG) = η =⇒ ηG+G⊤η = 0.

Gli operatori G che soddisfano ηG+G⊤η = 0 formano l’algebra di
Lie so(1, 3). Introduciamo i generatori anti-simmetriciMµν = −Mνµ
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come base canonica:(
Mµν

)ρ
σ = ηµσ δ

ρ
ν − ηνσ δρµ.

Un generico elemento G si espande come G = 1
2ω

µνMµν con ωµν =
−ωνµ.

Commutatori generali e riduzione a J ,K. Dalla
rappresentazione precedente segue il commutatore di Lorentz[

Mµν , Mρσ

]
= ηνρMµσ − ηµρMνσ − ηνσMµρ + ηµσMνρ.

Definiamo i generatori fisici

Ji ≡ 1
2 ϵijkMjk, Ki ≡M0i, i, j, k ∈ {1, 2, 3},

dove ϵijk è il simbolo di Levi–Civita con ϵ123 = +1. I commutatori
si riducono a[
Ji, Jj

]
= ϵijkJk,

[
Ji, Kj

]
= ϵijkKk,

[
Ki, Kj

]
= −ϵijkJk.

Questa è precisamente l’algebra so(1, 3), con J che chiude in so(3)
e K che trasforma come vettore sotto rotazioni.

Rappresentazione esplicita 4× 4. Nel sistema di coordinate
(0, 1, 2, 3) = (t, x, y, z) si possono scegliere

(J1)µν =

rr
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , (J2)µν =

rr
0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 , (J3)µν =

rr
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 ,

(K1)µν =

rr
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , (K2)µν =

rr
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , (K3)µν =

rr
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 .

È immediato verificare che ηJi + J⊤
i η = 0 e ηKi +K⊤

i η = 0, e
che i commutatori sopra sono soddisfatti.

Esponenziale di gruppo e trasformazioni finite. Per un
angolo θ e un versore n̂,

R(n̂, θ) = exp
(
θ n̂·J

)
, BE(n̂, ϕE) = exp

(
ϕE n̂·K

)
,
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B Algebra dei generatori e struttura di simmetria

dove la rapidità energetica ϕE è definita da

tanhϕE = βE = E

Ep
, coshϕE = γE , sinhϕE = γE βE .

La legge di composizione dei boost segue dal lemma di Ba-
ker–Campbell–Hausdorff (BCH). Per boost non collineari, il termine
[Ki, Kj ] ∝ −Jk genera una rotazione finita (rotazione di Wigner),
coerente con la cinematica sviluppata nel testo principale.

Decomposizione su(2) ⊕ su(2). Definiamo i combinatori
complessi

A = 1
2
(
J + iK

)
, B = 1

2
(
J − iK

)
.

Si verifica

[Ai, Aj ] = ϵijkAk, [Bi, Bj ] = ϵijkBk, [Ai, Bj ] = 0,

ossia so(1, 3)C ∼= su(2)⊕su(2). Le rappresentazioni irriducibili della
componente connessa SO+(1, 3) sono etichettate da coppie (j+, j−)
di spin semi-interi.

Casimir dell’algebra. Con Mµν = ηµαηνβMαβ , i due invarianti
di Lie (commutano con tutti i generatori) sono

C1 = 1
2 MµνM

µν = J2 −K2, C2 = 1
4 ϵµνρσM

µνMρσ = J ·K.

La prova che [Ca,Mαβ ] = 0 (a = 1, 2) segue dall’identità di Jacobi
e dalla completa anti-simmetria di ϵµνρσ.

Rappresentazione di copertura SL(2,C). Associare a un
4-vettore Xµ la matrice hermitiana X = Xµσµ (σ0 = ⊮, σi di
Pauli). Ogni Λ ∈ SO+(1, 3) è indotta da un S ∈ SL(2,C) tramite

X 7−→ X ′ = S X S†, detX ′ = detX = ηµνX
µXν = s2

E .

Rotazioni e boost corrispondono a

SR(n̂, θ) = exp
(
− i

2 θ n̂·σ
)
, SB(n̂, ϕE) = exp

(
+ 1

2 ϕE n̂·σ
)
.
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La moltiplicazione S2S1 riproduce via identità di Pauli la decom-
posizione boost+rotazione e fornisce, in forma chiusa, l’angolo di
Wigner (visto nel corpo del testo).

Little groups (classificazione orbits). Dato
un 4-vettore pµ, il little group W (p) ⊂ SO+(1, 3)
è l’isotropo di p: Λp = p. Si trovano tre classi:
(i) timelike (p2 > 0) : W (p)∼=SO(3), (ii) lightlike (p2 = 0) : W (p)∼=E(2), (iii) spacelike (p2 < 0) : W (p)∼=SO(2, 1).

Questa classificazione governa le rappresentazioni unitarie in-
dotte (teoria di Wigner) e non dipende dalla parametrizzazione
planckiana del boost.

Legame con i boost energetici della RRP. La RRP
parametrizza i sottogruppi di boost tramite

βE = E

Ep
, |βE | < 1, ϕE = artanh(βE), γE = coshϕE ,

senza alterare l’algebra di generatore: la struttura di simmetria
resta so(1, 3). In particolare:

BE(n̂, ϕE) = exp
(
ϕE n̂·K

)
, R(n̂, θ) = exp

(
θ n̂·J

)
,

BE(n̂2, ϕE,2)BE(n̂1, ϕE,1) = RW BE(n̂12, ϕE,12),
con RW rotazione di Wigner determinata univocamente dai com-
mutatori [Ki, Kj ] ∝ Jk. La chiusura di gruppo, l’associatività e
la stabilità del bound |βE | < 1 discendono dalla linearizzazione
additiva in rapidità ϕE .

Riassunto operativo.

1. I generatori Mµν definiti da ηG+G⊤η = 0 realizzano so(1, 3).

2. La base fisica {J ,K} soddisfa [Ji, Jj ] = ϵijkJk, [Ji, Kj ] =
ϵijkKk, [Ki, Kj ] = −ϵijkJk.

3. I Casimir sono C1 = J2 −K2 e C2 = J ·K.

4. La decomposizione complessa fornisce su(2) ⊕ su(2) con
generatori A,B.

5. La copertura SL(2,C) agisce per congruenza X 7→ SXS†,
preservando s2

E .
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C Soluzioni esatte in cosmologia e astrofisica

6. La parametrizzazione planckiana entra solo nella scelta della
rapidità ϕE = artanh(E/Ep): la struttura di simmetria resta
quella di Lorentz.

C Soluzioni esatte in cosmologia e astrofisi-
ca

C.1 Cosmologia FLRW con γE costante: soluzioni
esatte a equazione di stato costante

Consideriamo uno spaziotempo omogeneo e isotropo con metrica
FLRW (firma +−−−) e materia come fluido perfetto con equazione
di stato p = w ρc2, con w costante. Nel quadro RRP con ripeso
energetico costante γE > 1 si ha

H2 ≡
(
ȧ

a

)2
= 8πG

3
ρ

γ2
E

− kc2

a2 + Λc2

3 , ρ̇+ 3H
(
ρ+ p

c2

)
= 0.

La continuità implica ρ(a) = ρ0 (a0/a)3(1+w).
Per k = 0 e Λ = 0 otteniamo

H =
√

8πG
3γ2

E
ρ0
(
a0
a

)3(1+w)
2 , ȧ

a = α

a

3(1+w)
2

, α ≡
√

8πG
3γ2

E
ρ0 a

3(1+w)
2

0 .

Separando le variabili,

a
3(1+w)

2 da = α dt ⇒ a(t) = a⋆

(
t

t⋆

) 2
3(1+w)

,

con a⋆, t⋆ costanti d’integrazione. Dunque l’evoluzione di po-
tenza è identica alla RG classica, ma i tempi caratteristici so-
no dilatati dal fattore γE attraverso α ∝ 1/γE . In particolare:
polvere (w = 0) : a(t)∝ t2/3, radiazione (w = 1

3) : a(t)∝ t1/2.
Con Λ > 0 e k = 0, a bassa densità domina la soluzione de Sitter

a(t) ∝ exp

√Λc2

3 t

 ,
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C.2 Modello di bounce esatto con legame ϵ2(a) = ρ(a)/ρp

mentre con k ̸= 0 si ottengono le usuali soluzioni trigonome-
triche/iperboliche sostituendo ρ → ρ/γ2

E in tutte le costanti
caratteristiche.
Osservazione. Per γE = costante, l’intera dinamica FLRW è for-
malmente equivalente alla RG con densità efficace ρeff = ρ/γ2

E ; gli
esponenti di legge di potenza non cambiano, ma le scale temporali
sono ricalibrate.

C.2 Modello di bounce esatto con legame ϵ2(a) =
ρ(a)/ρp

Introduciamo la realizzazione variazionale opzionale in cui il
rapporto planckiano locale ϵ(x) soddisfa il vincolo algebrico

ϵ2 ≡
(
Estate

Ep

)2

= ρ

ρp
, γ2

E = 1
1− ϵ2 = 1

1− ρ/ρp
,

con ρp una densità di scala planckiana. La prima di Friedmann
modificata diventa

H2 = 8πG
3 ρ

(
1− ρ

ρp

)
− kc2

a2 + Λc2

3 .

Ponendo k = Λ = 0 e p = wρc2 (con w costante), la continuità
ρ ∝ a−3(1+w) e l’equazione per H ammettono la soluzione esatta di
bounce

ρ(t) = ρp

1 +
(
t

tB

)2 , a(t) = aB

[
1 +

(
t

tB

)2
] 1

3(1+w)

,

con

tB = 1√
6πGρp

1
1 + w

, aB = costante (minimo non nullo di a).

Il punto di bounce (H = 0) avviene a ρ = ρp e l’evoluzione è re-
golare per ogni t ∈ R. Per w = 0 e w = 1

3 si ottengono esplicitamente

w = 0 : a(t) = aB

[
1 +

(
t
tB

)2
]1/3

, w = 1
3 : a(t) = aB

[
1 +

(
t
tB

)2
]1/4

.
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C Soluzioni esatte in cosmologia e astrofisica

Commento. Il bounce è qui una conseguenza dell’identificazione
ϵ2 = ρ/ρp, che rende γE divergente a densità planckiane e attenua
la sorgente gravitazionale ρ/γ2

E = ρ(1− ρ/ρp).

C.3 Soluzioni statiche sferiche: esterno ed interni
con densità costante

C.3.1 Esterno (vuoto) con massa efficace.

Nel vuoto T (eff)
µν = 0; quindi le soluzioni di Einstein in vuoto coin-

cidono con quelle standard, con i parametri di sorgente ripesati
quando si raccordano a un interno materiale. Per una sorgente
isolata di massa inerziale M la massa gravitante efficace all’esterno
è

Meff = M

γ2
E

,

e la metrica esterna è Schwarzschild–(A)dS:

ds2 =
(

1− 2GMeff

c2r
− Λr2

3

)
c2dt2 −

(
1− 2GMeff

c2r
− Λr2

3

)−1

dr2 − r2dΩ2.

Il raggio gravitazionale efficace è r(eff)
s = 2GMeff/c

2 = rs/γ
2
E .

C.3.2 Interno di Schwarzschild (fluido incomprimibile).

Assumiamo un interno sferico di raggio R e densità ρ = costante.
Nel quadro RRP con γE = costante nella regione sorgente, la densità
e la pressione efficaci sono

ρeff = ρ

γ2
E

, peff = p

γ2
E

.

La soluzione interna a densità costante è allora identica alla
soluzione classica con ρ→ ρeff . Ponendo

m(r) = 4π
3 ρeff r

3, e−λ(r) = 1− 2Gm(r)
c2r

= 1− 8πG
3c2 ρeff r

2,
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C.4 Onde gravitazionali in vuoto: soluzioni pp-wave

il potenziale temporale eν(r) è

eν(r) = 1
4

3
√

1− 2GMeff

c2R
−

√
1− 2Gm(r)

c2r

2

,

e la pressione radiale (TOV) risulta

peff(r) = ρeffc
2

√
1− 2Gm(r)

c2r −
√

1− 2GMeff
c2R

3
√

1− 2GMeff
c2R −

√
1− 2Gm(r)

c2r

.

Il raggio di Buchdahl si trasforma in

2GMeff

c2R
<

8
9 ⇔ 2GM

c2R
<

8
9 γ

2
E ,

mostrando che, a parità di M e R, l’effetto planckiano tende ad
allentare il vincolo di compattazione tramite Meff < M .

C.3.3 Soluzione radiativa di Vaidya (massa variabile).

Per un flusso radiale nullo (accrezione/evaporazione) la
metrica di Vaidya in coordinate avanzate v si scrive
ds2 =

(
1− 2GMeff(v)

c2r

)
c2dv2 + 2c dv dr − r2dΩ2, Meff(v) = M(v)

γ2
E

.

La componente di stress–energia nulla che sostiene la soluzione
scala come T

(eff)
vv = (1/4πr2) dMeff

dv , coerentemente con il ripeso
1/γ2

E .

C.4 Onde gravitazionali in vuoto: soluzioni pp-wave
Poiché in vuoto le equazioni restano Rµν = 0, ogni soluzione esatta
pp-wave della RG è soluzione anche in RRP. In coordinate di
Brinkmann

ds2 = 2 du dv +H(u, x, y) du2 + dx2 + dy2, ∂2
xH + ∂2

yH = 0,

fornisce un’onda piana esatta. La non-dispersione in vuoto (vph =
vgr = c) è garantita dall’assenza di termini di materia efficaci lungo
la propagazione.
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C Soluzioni esatte in cosmologia e astrofisica

C.5 Geodetiche radiali e lensing per il campo esterno
efficace

Nel campo esterno statico e sferico (Schwarzschild–(A)dS con Meff)
le equazioni geodetiche per particelle test sono identiche alle forme
standard con sostituzione M 7→ Meff . In particolare, per fotoni
(ds2 = 0) l’angolo di deflessione a primo ordine è

α̂ ≃ 4GMeff

c2b
= 4G
c2b

M

γ2
E

,

dove b è il parametro d’impatto. Per particelle massive (E∞, L
costanti del moto) il potenziale efficace

Veff(r) =
(

1− 2GMeff

c2r
− Λr2

3

)(
c2 + L2

r2

)

mostra lo spostamento dei raggi orbitali stabili/instabili in funzione
di Meff .

C.6 Riepilogo operativo
• Cosmologia, γE = costante: soluzioni FLRW identiche alla for-

ma RG con ρ→ ρ/γ2
E ; esponenti invariati, tempi caratteristici

ricalibrati.

• Bounce esatto: con ϵ2 = ρ/ρp si ottiene a(t) = aB [1 +
(t/tB)2]1/3(1+w) e ρ(t) = ρp/[1 + (t/tB)2].

• Astrofisica statica: esterni di Schwarzschild–(A)dS con Meff =
M/γ2

E ; interni incomprimibili e TOV si ottengono sostituendo
ρ→ ρ/γ2

E , p→ p/γ2
E .

• Onde in vuoto: le pp-wave restano soluzioni esatte; nessuna
dispersione di propagazione.

• Osservabili: deflessioni, raggi ISCO ed epoche caratteristiche
dipendono da Meff ; la cinematica di luce e GW in vuoto resta
indistinguibile da RG (leading order), mentre le differenze
emergono alla sorgente o in regimi ad alta ϵ.
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