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Abstract

La Relativita Ristretta Planckiana (RRP)! si propone come esten-
sione simmetrica della Relativita Ristretta di Einstein, fondata
sull’invarianza della velocita della luce c. In questo nuovo quadro,
Penergia di Planck

hcd
G
viene assunta come costante universale invariante e come limite
superiore invalicabile per I’energia concentrata in un singolo evento
fisico elementare o in un processo localizzato, e non per I'energia
totale macroscopica di un sistema esteso.

Viene introdotto un nuovo fattore di trasformazione,

E, =

1
1—(v/c)?’
dipendenza del tempo proprio dal contenuto energetico. Per £ — 0
si recupera il limite classico d7 ~ d¢, mentre per £ — E,, si verifica
un’accelerazione del tempo proprio, con dr/dt — oo.
La teoria conserva la struttura di gruppo di Lorentz mediante
I'introduzione dei boost energetici, caratterizzati dal parametro
Br = E/E,, e definisce un invariante planckiano

speculare al fattore di Lorentz v, = che governa la

2 _ 2 =12
sy = (cat)” — 7],
che resta costante sotto le trasformazioni planckiane.
Le equazioni di campo di FKinstein vengono modificate
sostituendo al tensore energia-impulso 7}, una forma efficace
Ty
2
TE
1Questa versione del lavoro rappresenta la prima stesura integrale della ricerca,
non ancora sottoposta a revisione esterna. Il testo potrebbe contenere impre-
cisioni formali o errori di conversione in I TEX, e sara oggetto di revisione,

integrazione e ampliamento nelle versioni successive, prima della sottomissione a
peer review.

eff)
T =




con conseguente attenuazione delle singolarita gravitazionali.

Tra le predizioni principali della RRP vi sono: scenari cosmologici
senza singolarita iniziale (Big Bounce), buchi neri regolari privi di
singolarita centrale, deviazioni cinematiche nei raggi cosmici ultra-
energetici e modifiche spettrali nelle onde gravitazionali emesse da
collassi estremi.

La Relativita Ristretta Planckiana si configura dunque come una
teoria falsificabile e testabile, capace di fornire un ponte concettuale
e matematico tra la Relativita di Einstein e le scale quantistiche di
Planck.
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1 Introduzione

1.1 Limiti della Relativita Ristretta e Generale di
Einstein

Le teorie relativistiche formulate da Albert Einstein nel XX secolo

— la Relativita Ristretta (1905) e la Relativita Generale (1915) —
hanno rivoluzionato la fisica moderna, fornendo un quadro coerente
per la descrizione dello spazio-tempo, della dinamica dei sistemi ad
alta velocita e della gravitazione come manifestazione geometrica.
Esse hanno superato i limiti della meccanica classica newtoniana,
rivelando la non assolutezza di spazio e tempo e I'influenza della
materia e dell’energia sulla curvatura dello spazio-tempo.

La Relativita Ristretta si fonda su due postulati fondamentali: (i)
le leggi della fisica sono identiche in tutti i sistemi inerziali, e (ii) la
velocita della luce nel vuoto & costante e indipendente dallo stato di
moto della sorgente e dell’osservatore. Da questi principi derivano la
contrazione delle lunghezze, la dilatazione temporale e ’equivalenza
massa-energia £ = mc?. Tuttavia, la teoria rimane limitata alla
cinematica e dinamica in assenza di campi gravitazionali.

La Relativita Generale estende questi principi includendo la
gravitazione, attraverso le equazioni di campo

G

G;w + Agm/ = CTT;UM

dove G, ¢ il tensore di Einstein, g, la metrica dello spazio-tempo,
T, il tensore energia-impulso e A la costante cosmologica. Que-
sta formulazione ha trovato conferme sperimentali straordinarie:
dalla precessione del perielio di Mercurio alla deflessione della lu-
ce in prossimita del Sole, fino alla rivelazione diretta delle onde
gravitazionali.

Nonostante il successo delle due teorie, emergono limiti
concettuali e sperimentali in contesti estremi:

1. Singolarita gravitazionali. La Relativita Generale predice
punti di densita e curvatura infinita, come al centro dei buchi
neri o all’origine del Big Bang. Tali divergenze indicano il
fallimento della teoria oltre le scale di validita attese.
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1 Introduzione

2. Incompatibilita con la meccanica quantistica. Mentre
le interazioni fondamentali (elettromagnetica, nucleare debole
e forte) sono descritte da teorie quantistiche di campo, la
gravitazione rimane formulata in termini geometrici classici.
L’unificazione con la meccanica quantistica richiede un quadro
che includa naturalmente le scale di Planck.

3. Limiti sperimentali. Le predizioni di Einstein sono state
verificate fino a scale di energia molto inferiori a quella di

Planck,
hcd
E, = ,/é ~ 1.22 x 101 GeV,

che rappresenta il confine naturale in cui effetti quantistici del-
la gravita non possono piu essere trascurati. Per confronto, le
energie raggiungibili al Large Hadron Collider sono dell’ordine
di E ~ 10*GeV, quindi circa E/E, ~ 10715,

4. Problema dell’inflazione e della cosmologia primordia-
le. Le soluzioni cosmologiche basate sulla Relativita Generale
richiedono meccanismi addizionali (campo inflatonico, energie
di vuoto) per spiegare l'orizzonte e la piattezza dell’universo.
Tuttavia, tali ipotesi non derivano direttamente dalla struttura
teorica della RG.

5. Stabilita ultra-relativistica. La cinematica di particelle con
energie ultra-energetiche (raggi cosmici fino a £ ~ 102 eV)
solleva, domande sulla validita del fattore di Lorentz standard

1

rYU - /71 — (0/0)27
quando si considerano processi prossimi alla scala di Planck.

Queste problematiche rendono evidente che la Relativita Ristret-
ta e Generale, pur essendo teorie di successo, non costituiscono
I'ultima parola sulla struttura dello spazio-tempo. E necessario
esplorare estensioni teoriche capaci di preservare i successi empirici
di Einstein ma, al contempo, di incorporare un limite superiore

10



1.2 Ruolo delle scale di Planck come nuova frontiera

di energia, F,, che svolga un ruolo simmetrico rispetto alla velo-
cita della luce c. La Relativita Ristretta Planckiana si inserisce
in questo contesto, proponendosi come un passo naturale verso
una descrizione coerente delle dinamiche fisiche ai confini estremi
dell’universo.

1.2 Ruolo delle scale di Planck come nuova frontiera

Le scale di Planck, introdotte per la prima volta da Max Planck
nel 1899, rappresentano le combinazioni fondamentali delle costanti
universali i (costante di Planck ridotta), ¢ (velocita della luce)
e G (costante gravitazionale). Esse definiscono unita naturali di
lunghezza, tempo, energia e massa, al di 1a delle quali 'attuale
formulazione della fisica cessa di essere valida.

Le definizioni canoniche sono:

| hG
lp =\ — ~ 1616 10% m,

L [n
== M9 <5301 x 1074,
C C
[n
my = 50 ~ 2.176 x 10 8kg,

h 5
E, = myc® = % ~ 1.956 x 10°J & 1.2209 x 10'° GeV.

Queste scale fissano i limiti naturali entro i quali si prevede
che gli effetti quantistici della gravita diventino significativi. In
particolare:

1. Lunghezza di Planck [, Stabilisce il limite inferiore con-
cepibile per la risoluzione spaziale. Al di sotto di tale scala,
la nozione di distanza classica perde significato a causa delle
fluttuazioni quantistiche del vuoto gravitazionale.

11



1 Introduzione

2. Tempo di Planck ¢, Rappresenta la piu piccola unita tempo-
rale dotata di senso fisico. Eventi separati da intervalli inferiori
a t, non possono essere distinti in modo univoco da alcuna
teoria classica.

3. Massa ed energia di Planck m,, F, Definiscono la soglia
energetica oltre la quale le collisioni di particelle o i processi
gravitazionali generano effetti quantistici non trascurabili.
Qualsiasi descrizione classica basata sulla Relativita Ristretta
o Generale diventa inadeguata.

Le scale di Planck emergono naturalmente quando si combina-
no le tre costanti fondamentali secondo criteri dimensionali. Ad
esempio, l’energia di Planck deriva dalla condizione

[By] = [A]*[eP*[G) 2,

che e 'unica combinazione dimensionale coerente con unita di
energia.
Il ruolo delle scale di Planck come frontiera teorica ¢ duplice:

o Limite concettuale. Esse segnano i confini oltre i quali la
separazione fra Relativita Generale e Meccanica Quantistica
non ¢ piu sostenibile. Al di sopra di £, si ipotizza che lo
spazio-tempo stesso diventi quantizzato.

o Guida sperimentale. Sebbene irraggiungibili nelle condizioni
ordinarie di laboratorio (gli acceleratori moderni raggiungono
al massimo E ~ 10%*GeV), le scale di Planck potrebbero
essere sondate indirettamente tramite fenomeni astrofisici e
cosmologici: raggi cosmici ultra-energetici, collassi stellari,
radiazione di fondo cosmica e segnali gravitazionali.

Il quadro della Relativita Ristretta Planckiana pone ’energia di
Planck £, sullo stesso piano della velocita della luce ¢, elevandola
a costante universale e invariante. Se ¢ rappresenta un limite supe-
riore per le velocita meccaniche, E), diventa un limite superiore per
I’energia concentrata in un singolo evento fisico elementare, inva-
riante in tutti i sistemi inerziali. Cio introduce una nuova simmetria
speculare che modifica profondamente la cinematica e la dinamica

12



1.3 L’energia di Planck come costante universale invariante

dei sistemi ad alta energia, fornendo una possibile via per superare
i limiti interni della Relativita di Einstein e avvicinarsi a una teoria
coerente della gravita quantistica.

1.3 L’energia di Planck come costante universale
invariante

L’energia di Planck, definita come

hcd

Ep - ?,
rappresenta la piu alta scala energetica coerente ottenibile a partire
dalle tre costanti universali /i, ¢ e G. Essa non dipende da scelte
arbitrarie di unita di misura o da convenzioni particolari, ma ¢
imposta unicamente dalla struttura dimensionale della fisica fon-
damentale. In tal senso, £, si configura come un limite naturale,
esattamente come la velocita della luce ¢ funge da limite per le
velocita meccaniche nella Relativita Ristretta.

Dal punto di vista della Relativita Ristretta Planckiana (RRP),
il postulato di invarianza di E, stabilisce che tale energia costituisce
un massimo assoluto non superabile da alcun processo fisico ele-
mentare. Questo implica che, cosi come nessun corpo materiale puo
raggiungere v = ¢, nessun evento locale puo concentrare un’energia
superiore a [,

Formalmente, cio si traduce nell’introduzione di un nuovo fattore
di trasformazione:

1
E(E) = ———, 0< E<BE,

- (&)

I limite £ — E), porta a 7g — 00, analogamente al limite v — ¢
nella Relativita di Einstein. La divergenza del fattore vg riflette
I'impossibilita fisica di oltrepassare la soglia di E,, garantendone
cosi 'invarianza.

Questa proprieta di invarianza si verifica in tutti i sistemi iner-
ziali. Consideriamo due osservatori, O e @, in moto relativo. Se

13



1 Introduzione

un evento locale ha energia I/ = E, per O, allora la trasformazione
planckiana

El = f(Ev BE)»
con Bg = E/E,, deve restituire ancora E' = E,. Cio garantisce che
E,, non solo ¢ un limite superiore, ma ¢ anche identico in qualunque
sistema di riferimento, esattamente come accade per c.
Un’ulteriore conseguenza della natura invariante di F, emerge
confrontando con le trasformazioni di Lorentz. Nel caso classico, la
composizione di velocita rispetta la legge

U1 + U2

V12 = T ios
1+ o2

che assicura v < c¢. Nel formalismo planckiano, la composizione
delle energie assume la forma
Bt B E;

12_1+51627 ﬁlzfp7

che implica

Fi < Ep se By, By < Ep.

La struttura matematica assicura quindi la stabilita del bound
energetico, dimostrando che £, rimane costante e universale sotto
trasformazioni e composizioni.

Dal punto di vista concettuale, ’elevazione di F, a costante
invariante modifica la gerarchia dei limiti fisici. Se la Relativita
Ristretta ¢ fondata sulla coppia (¢, mg), con mg massa a riposo e ¢
limite di velocita, la Relativita Ristretta Planckiana introduce la
coppia (Ep, ¢), in cui la velocita della luce governa la cinematica e
I’energia di Planck governa la dinamica dei regimi ultra-energetici.
Questo dualismo rappresenta un’estensione simmetrica del principio
di relativita, stabilendo una nuova costante universale fondamentale.

1.4 Simmetria speculare tra velocita della luce ¢ ed
energia di Planck £,

Uno degli aspetti centrali della Relativita Ristretta Planckiana
(RRP) & l'introduzione di una simmetria concettuale tra due co-
stanti universali: la velocita della luce ¢, che delimita lo spazio delle

14



1.4 Simmetria speculare tra velocita della luce c ed energia di Planck £,

velocita, e 'energia di Planck £, che rappresenta il limite superiore
delle energie fisiche localizzate. La struttura matematica ¢ costruita
in modo tale che le formule cinematiche della Relativita Ristret-
ta vengano “specchiate” in un dominio energetico, sostituendo il
rapporto v/c con E/E,.

Nella Relativita Ristretta classica, il fattore di Lorentz ¢ definito
da:

1

2
1-(3)
Questo fattore diverge quando v — ¢, imponendo che nessun sistema
materiale possa raggiungere o superare la velocita della luce.
Nel formalismo planckiano, si introduce un fattore del tutto
analogo:

1

(£)

In questo caso, e I'energia a essere vincolata da un limite superiore.
Per E — E,, il fattore yg diverge, rendendo fisicamente impossibile
oltrepassare E,,.

La simmetria tra le due strutture puo essere messa in evidenza
riscrivendo le trasformazioni. Per la cinematica relativistica, la
trasformazione di Lorentz lungo la direzione x assume la forma:

TE =

v’ = T (Z‘ - Ut)a

=y (t— 2z
= Yy 2 .

La controparte planckiana si ottiene sostituendo il parametro di
velocita con un parametro energetico:

¥ =g (xr —ugt),

UE
t’:'yE (tCQZE),
E

dove



1 Introduzione

con cp una costante di velocita introdotta per coerenza
dimensionale.
Questa corrispondenza stabilisce una perfetta simmetria formale:

E

< ? T
Ep

ol

Yo — YE-

Tale dualita non ¢ soltanto un artificio matematico, ma ha
conseguenze profonde. Nella Relativita di Einstein, I'invarianza di
¢ assicura che la struttura dello spazio-tempo sia la stessa in tutti
i sistemi inerziali. Nella RRP, I'invarianza di £, garantisce che la
struttura energetica dell’universo sia la stessa in tutti i sistemi di
riferimento, impedendo che processi fisici localizzati superino la
soglia planckiana.

Un aspetto cruciale ¢ che la simmetria tra c ed E, si estende
alla legge di composizione. Per le velocita, la Relativita Ristretta
impone:

iy — V1 + Vg
12 1+ vé#’

che preserva il bound v < c. In forma speculare, la RRP definisce:

btk B
1+/Blﬁ2) ’ Ep’

che preserva il bound F < FE),. La simmetria tra queste due leggi
di composizione dimostra che la struttura di gruppo sottostante e
isomorfa: in entrambi i casi I'algebra di Lie ¢ s0(1, 3), con la sola
differenza interpretativa tra domini cinematici ed energetici.

Da un punto di vista teorico, questa simmetria speculare sug-
gerisce l'esistenza di una “doppia relativita”: una basata su c, che
governa la propagazione nello spazio-tempo, e una basata su £,
che governa i limiti energetici dei processi fisici. L’introduzione di
entrambe le costanti come invarianti universali amplia il principio
di relativita a un quadro piu generale, in cui lo spazio-tempo e lo
spazio-energia sono trattati come domini duali della stessa struttura
matematica.

Pra
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1.5 Obiettivi: coerenza matematica, predizioni verificabili, programma
di ricerca sperimentale

1.5 Obiettivi: coerenza matematica, predizioni
verificabili, programma di ricerca sperimentale

La formulazione della Relativita Ristretta Planckiana (RRP) nasce
dall’esigenza di estendere i principi relativistici oltre i limiti stabiliti
dalle teorie einsteiniane, introducendo come nuova costante univer-
sale I'energia di Planck E),. Gli obiettivi della teoria possono essere
articolati su tre livelli complementari: (i) la consistenza matematica
interna, (ii) la capacita di produrre predizioni verificabili e (iii) la
definizione di un programma sperimentale per la falsificabilita.

1. Coerenza matematica. La prima esigenza ¢ la costruzione
di un formalismo rigoroso che garantisca stabilita logica e consi-
stenza algebrica. Il cuore della RRP & I'introduzione del fattore
planckiano

1

£\2

EP
che ricalca i] ruolo del fattore di Lorentz ma traslato nel dominio
energetico. E necessario dimostrare che tale struttura preserva la

proprieta di gruppo delle trasformazioni, ossia che le composizioni
di boost energetici obbediscono a una legge chiusa:

_ Atk B
1_}_61627 ! Ep’

YE =

Pra

e che questa regola assicura l'invarianza del vincolo |E| < E,.
Inoltre, ’analisi dei generatori

(i, Jj] = €ijidr,  [Ji, K] = €u Ky,  [Ki, Kj] = —€ijiJk

mostra che I'algebra ¢ isomorfa a so(1,3), garantendo che la strut-
tura matematica sottostante sia compatibile con il formalismo
lorentziano.

2. Predizioni verificabili. La RRP deve fornire risultati con-
creti che si distinguano dalla Relativita Ristretta e Generale nei
regimi prossimi alla scala di Planck. Tra le principali predizioni si
annoverano:

17



1 Introduzione

o Accelerazione del tempo proprio: per ' — E,,, il rapporto

dr

= vE(E) — oo

indica un’accelerazione del tempo fisico rispetto al tempo
geometrico, con implicazioni sui processi microscopici estremi.

o Cosmologia planckiana: in epoche con densita energetica
prossima a [,, I'espansione dell'universo dovrebbe mostra-
re deviazioni osservabili rispetto agli scenari inflazionari
standard.

e Buchi neri regolari: la sostituzione

T

%

eff
Tuv =

nelle equazioni di Einstein suggerisce una riduzione della
singolarita centrale e la possibilita di geometrie regolari.

e Collisioni ad altissima energia: nei raggi cosmici ultra-
energetici (E ~ 10*°eV) dovrebbero emergere deviazioni
cinematiche misurabili rispetto alle previsioni einsteiniane.

3. Programma di ricerca sperimentale. Affinché la RRP
possa essere valutata dalla comunita scientifica, occorre delineare
un piano sperimentale coerente. Alcune direzioni includono:

o Acceleratori di particelle: anche se lontani da Ej,, i futuri colli-
sori multi-TeV (es. FCC, CEPC) potrebbero rivelare deviazioni
minime da testare con precisione statistica.

o Astrofisica delle alte energie: 1'osservazione dei raggi cosmici
di massima energia e dei lampi gamma (GRB) fornisce un
laboratorio naturale per sondare effetti planckiani.

o Onde gravitazionali: la rilevazione di segnali provenienti da
collassi stellari estremi e fusione di buchi neri puo essere
analizzata in cerca di frequenze massime attenuate da fattori

VE-
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1.6 Confronto con le estensioni relativistiche esistenti

o Cosmologia osservativa: telescopi come JWST o missioni
CMB di nuova generazione potrebbero misurare anomalie nel
redshift cosmologico, indicativi di una dinamica planckiana.

La RRP si pone dunque come un’estensione concettualmente
rigorosa della Relativita, capace di mantenere la simmetria ma-
tematica, fornire predizioni concrete e proporre scenari di test
sperimentali che consentano di verificarne la validita o di escluderla.

1.6 Confronto con le estensioni relativistiche
esistenti

1.6.1 Relativita a due scale invarianti (DSR) e confronto
con la RRP

La Doubly Special Relativity (DSR), proposta inizialmente da
Amelino-Camelia e successivamente sviluppata in diversi forma-
lismi (k-Poincaré, teorie con algebra deformata, ecc.), introduce
accanto alla velocita della luce ¢ una seconda costante invariante: la
lunghezza di Planck L, (o, in modo equivalente, l'energia di Planck
E,). L'obiettivo principale ¢ quello di costruire una cinematica in
cui le trasformazioni di Lorentz vengano deformate in modo tale
da preservare, oltre a ¢, anche L, come quantita universale.

Motivazioni della DSR. L’idea nasce dal tentativo di incorpo-
rare gli effetti quantistici della gravita senza rinunciare al principio
di relativita. Poiché i modelli di gravita quantistica (stringhe, loop
quantum gravity) suggeriscono l'esistenza di una lunghezza minima
L,, la DSR si propone come un’estensione naturale della Relativita
Ristretta per energie £ < Ej,.

Struttura matematica. In DSR le relazioni di dispersione
vengono modificate in modo covariante:

E? — p? —m2t + f(E,p;Ly) =0,

dove f(E,p;L,) rappresenta termini correttivi (ad esempio f ~
Lycp?E). Inoltre, i boost assumono una forma non lineare nello
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spazio degli impulsi, del tipo:

dE dp- _ B Ly o Ly
¢ ¢ 22 2

2
dig = —CPy, pza

con ¢ rapidita deformata. Le trasformazioni restano coerenti con
un’algebra deformata (k-Poincaré).

Limiti concettuali e sperimentali della DSR. Nonostante la
coerenza algebrica, la DSR presenta diversi problemi:

1.

Soccer-ball problem: difficolta a estendere la teoria a siste-
mi macroscopici composti da molte particelle, per i quali la
deformazione dovrebbe essere trascurabile.

. Ambiguita nella conservazione: esistono diverse formu-

lazioni per le leggi di conservazione di energia e quantita di
moto, non sempre univoche.

Interpretazione geometrica: la DSR agisce sullo spazio
degli impulsi, senza una formulazione diretta sullo spazio-
tempo, se non in approcci complessi come la “relative locality”.

. Predizioni non confermate: inizialmente si pensava che la

DSR modificasse la soglia del GZK cutoff dei raggi cosmici
ultra-energetici. Tuttavia, studi successivi hanno mostrato che
la DSR standard non predice alcuna soppressione del GZK
cutoff, a differenza di modelli con riferimento assoluto.

. Velocita della luce energia-dipendente: in molte formula-

zioni la DSR implica che ¢ dipenda dall’energia. Cio porterebbe
a ritardi misurabili tra fotoni ad alta e bassa energia prove-
nienti da lampi gamma (GRB). Tuttavia, osservazioni del
Fermi-LAT (2009) hanno mostrato che fotoni fino a 31 GeV
arrivano quasi simultaneamente ad altri di energia inferiore,
escludendo effetti di dispersione di primo ordine anche oltre
la scala di Planck.

Inconsistenze teoriche: una dipendenza energia-dipendente
di ¢ porterebbe a interazioni non locali tra particelle, gia
escluse dalla fisica delle alte energie. Pertanto, le versioni della
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1.6 Confronto con le estensioni relativistiche esistenti

DSR con correzioni di primo ordine risultano oggi fortemente
disfavorevoli.

Differenze concettuali con la RRP. La Relativita Ristretta
Planckiana (RRP) si distingue nettamente:

La costante invariante fondamentale non ¢ la lunghezza di
Planck L,, ma [’energia di Planck E,.

La RRP mantiene intatta ’algebra di Lorentz:

i, Jj] = €ijid, i, K] = €u Ky, [Ki, Kj) = —€ijiJr,
con 'unica differenza che i boost agiscono nello spazio delle
energie:

FE 1
BE = —, YE =

By J1— (E/E)?

La RRP introduce una simmetria speculare rispetto alla RR:
al posto di v/c si utilizza E/E,, con lo stesso formalismo
matematico.

In DSR le relazioni di dispersione sono perturbative e modello-
dipendenti; in RRP l'invarianza ¢ esatta e basata su vg, senza
ambiguita.

Il problema della composizione non sorge in RRP: la legge di
addizione energetica ¢ la stessa delle velocita relativistiche,

_Bi+h B
1+5152’ ! Ep’

che garantisce £/ < E, anche per processi composti.

612

Inoltre, la RRP puo essere vista come un’estensione teorica
della Teoria Unificata della Coscienza (TUC)?, in cui la stessa
legge di invarianza planckiana era stata formulata in termini
fenomenologici della coscienza. La RRP ne costituisce la for-
malizzazione in fisica classica, con 'obiettivo di verificarne la
validita empirica.

2Cfr. De Angelis, A. (2025). TUC — Teoria Unificata della Coscienza. Volume I:
Fondamenti formali e dinamiche emergenti. Zenodo. 10.5281/zenodo . 16792942.
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Sintesi. La DSR e la RRP condividono I'idea di introdurre una
nuova scala invariante, ma divergono radicalmente:

e La DSR deforma la cinematica di Lorentz e implica spesso
effetti energia-dipendenti della velocita della luce, oggi esclusi
sperimentalmente in prima approssimazione.

o La RRP mantiene la struttura di Lorentz ed estende il princi-
pio di relativita con una simmetria speculare tra c ed £, risul-
tando piu semplice, coerente e libera dalle principali criticita
teoriche e sperimentali che affliggono la DSR.

1.6.2 Gravity’s Rainbow e confronto con la RRP

La teoria nota come Gravity’s Rainbow, proposta da Magueijo
e Smolin (2003-2004), rappresenta un’estensione della Relativita
Generale in cui la metrica dello spaziotempo dipende esplicitamente
dall’energia delle particelle che lo attraversano. L’idea centrale ¢
che la geometria percepita non sia universale, ma “arcobaleno”,
cioeé energia-dipendente, regolata da due funzioni adimensionali
f(E/Ep) e g(E/Ep;). Queste, nel limite £/Ep; — 0, devono
tendere all’'unita, in modo da recuperare la Relativita Generale
standard.

Motivazioni di Gravity’s Rainbow. Il punto di partenza &
I’analogia con la Doubly Special Relativity (DSR), dove accanto a
¢ si introduce una seconda scala invariante legata a Ep;. Gravity’s
Rainbow estende questa idea al settore gravitazionale, ipotizzando
che la curvatura stessa possa variare in funzione dell’energia della
particella test. In questo quadro, la metrica prende la forma:

B (d:EO)2 N (dxi)2
fA(E/Ep)  ¢*(E/Ep)’

cosl che ogni energia definisca una “famiglia” distinta di spaziotempi.

ds® =

Struttura matematica. Le equazioni di Einstein vengono
modificate in maniera energia-dipendente:

Gy E) = 87G(E) T, (E) + g \(E),
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1.6 Confronto con le estensioni relativistiche esistenti

dove sia G sia A diventano funzioni di E. A livello cosmologico, la
metrica FRW si deforma in:

dt? a’(t) o

- + =5 Yijdatda?

fAE) g (B)

con equazioni di Friedmann modificate che possono, in principio,
risolvere il problema dell’orizzonte e ridurre le singolarita.

ds*(E) =

Limiti concettuali e critiche. Nonostante ’eleganza formale,
Gravity’s Rainbow e stata oggetto di critiche severe:

1. Assenza di quantizzazione coerente. Non esiste una formu-
lazione quantistica completa che renda il modello compatibile
con il Modello Standard delle particelle.

2. Non-localita. La dipendenza della metrica dall’energia con-
duce a fenomeni di non-localita, gia esclusi dagli esperimenti
di fisica delle alte energie.

3. Ambiguita interpretativa. La teoria non chiarisce se le fun-
zioni f e g siano universali o dipendano dal tipo di particella.
Inoltre, il principio di equivalenza risulta deformato.

4. Critiche della comunita. Sabine Hossenfelder ha osservato
che “Rainbow Gravity non ¢ né una teoria né un modello
completo, ma solo un’idea che, nonostante oltre un decennio
di lavoro, non si e sviluppata in una formulazione coerente.
Non ¢ compatibile con il Modello Standard, porta a non-
localita escluse e non dovrebbe essere pubblicata finché questi
problemi non vengano risolti”.

Differenze concettuali con la RRP. La Relativita Ristretta
Planckiana (RRP) differisce radicalmente:

e In RRP non si introduce una metrica energia-dipendente:
lo spaziotempo resta universale, con struttura lorentziana
invariata.

» La costante invariante fondamentale ¢ I'energia di Planck £,
assunta come limite superiore universale, senza dipendenza
da funzioni arbitrarie f e g.
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o Le trasformazioni mantengono I’algebra di Lorentz intatta,
con boost energetici caratterizzati da

E 1
= = ny Y )
Ly /1 — (E/E,)?

mentre in Gravity’s Rainbow la simmetria di Lorentz e
deformata e sostituita da metriche energia-dipendenti.

¢ La RRP implementa una simmetria speculare tra velocita e
energia, senza introdurre non-localita né modificare il principio
di equivalenza.

o Sul piano fenomenologico, Gravity’s Rainbow predice varia-
zioni della velocita della luce e orizzonti energia-dipendenti,
gia esclusi sperimentalmente, mentre la RRP propone effetti
testabili in regimi planckiani (Big Bounce, buchi neri regolari,
onde gravitazionali attenuate).

Sintesi. Gravity’s Rainbow rappresenta un tentativo di estendere
la DSR al settore gravitazionale, ma soffre di limiti strutturali e
critiche fondamentali, che ne mettono in dubbio la validita. La
Relativita Ristretta Planckiana, al contrario, conserva la coerenza
algebrica della Relativita Speciale ed eleva E, a costante universale,
proponendosi come estensione pitt semplice, rigorosa e compatibile
con i principi di localita e universalita dello spaziotempo.

1.6.3 Relativita Speciale de Sitter (dSSR) e confronto
con la RRP

La de Sitter Special Relativity (dSSR) nasce dall’idea di sostituire
il gruppo di Poincaré, che governa la Relativita Ristretta (RR) di
Einstein, con il gruppo di simmetria pitt ampio SO(4, 1) (0 SO(3,2)
in caso anti-de Sitter). In questo quadro, lo spaziotempo non &
piatto ma dotato di curvatura costante regolata dalla costante
cosmologica A, che introduce un raggio di curvatura fondamentale

3
2=
A
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1.6 Confronto con le estensioni relativistiche esistenti

Motivazioni della dSSR. La teoria ¢ motivata dalla volonta di
includere fin dall’inizio la costante cosmologica nel principio di rela-
tivita, riconoscendo A come costante universale al pari di c¢. Inoltre,
I'adozione del gruppo SO(4,1) permette di descrivere in modo piu
naturale spazi-tempi cosmologici omogenei e isotropi, superando
i limiti della Relativita Speciale che si fonda sullo spaziotempo di
Minkowski.

Struttura matematica. Lo spaziotempo de Sitter puo essere
descritto come un iperspazio immerso in cinque dimensioni:

naxx° + (xH? = 1%,

con 1, metrica di Minkowski. In coordinate stereografiche, la
metrica assume la forma conforme:

1

Guv = Qz(z)mm Qz) = ma

dove 02 = nab:c“:rb. Le traslazioni ordinarie vengono sostituite da

combinazioni di traslazioni e trasformazioni conformi, e le quantita
conservate si ridefiniscono come correnti di Noether associate al
gruppo SO(4,1).

Limiti concettuali. La dSSR, pur elegante, presenta alcune
criticita:
1. Parametrizzazione arbitraria. La costante [ (o A) ¢ in-

trodotta come parametro esterno, non derivato naturalmente
dalla teoria, riducendo il potere predittivo.

2. Effetti non misurabili. Con il valore osservato della costante
cosmologica (A ~ 1072 m~2), gli effetti cinematici di dSSR ri-
sultano estremamente piccoli e non accessibili alle osservazioni
attuali.

3. Instabilita quantistica. Analisi di teoria quantistica dei
campi su sfondi de Sitter indicano che il vuoto di Bunch-Davies
puo essere instabile sotto perturbazioni, sollevando dubbi sulla
consistenza quantistica dello scenario.

25



1 Introduzione

4. Problemi di conservazione. La mancanza di traslazioni
standard complica la definizione di energia e impulso, rendendo
meno immediata la connessione con la fisica osservabile.

Differenze concettuali con la RRP. La Relativita Ristretta
Planckiana (RRP) si distingue nettamente dalla dSSR:

¢ Nella dSSR la nuova costante universale & geometrica, il rag-
gio di curvatura [ = /3/A, mentre nella RRP la costante

fondamentale ¢ dinamica, I'energia di Planck E, = \/hc®/G.

o La dSSR si fonda sulla sostituzione del gruppo di Poincaré con
SO(4,1), modificando la struttura globale dello spaziotempo.
La RRP, invece, mantiene intatta 1’algebra di Lorentz so(1, 3):

i, Jj] = €ijid, i, K] = €u Ky,  [Ki, K] = —€ijidr,

introducendo soltanto un nuovo dominio energetico attraverso
il boost planckiano

1

Vg = ———.
V1- (E/E)?

o La dSSR descrive deviazioni su scale cosmologiche enormi,
difficilmente testabili sperimentalmente; la RRP mira invece
a regimi di altissima energia, in prossimita di E,, offrendo
predizioni verificabili in astrofisica delle alte energie e nelle
onde gravitazionali.

e La dSSR ridefinisce le quantita di moto attraverso correnti
di Noether modificate, mentre la RRP conserva le relazio-
ni canoniche di dispersione introducendo una massa efficace
Meff = MYE € un tensore energia-impulso attenuato

T.,
S8

eff __
TW =
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Sintesi. La de Sitter relativity rappresenta un’estensione geome-
trica della Relativita Speciale basata sulla costante cosmologica, con
implicazioni soprattutto cosmologiche e astrofisiche. La Relativita
Ristretta Planckiana, invece, introduce un limite dinamico sull’e-
nergia massima dei processi locali, con una simmetria speculare
rispetto alla velocita della luce c. Le due teorie condividono I'idea di
estendere il principio di relativita con una nuova costante universale,
ma differiscono profondamente ma differiscono profondamente per
natura, scopo e dominio fenomenologico.

2 Postulati fondamentali della Relativita
Ristretta Planckiana (RRP)

Dalla combinazione delle tre costanti universali A, ¢ e G emergono in
maniera univoca le scale di Planck, che rappresentano soglie fisiche
fondamentali. Esse non sono parametri arbitrari, ma definizioni
naturali che stabiliscono il confine fra regime classico e regime
quantistico-gravitazionale. La loro introduzione ¢ imprescindibile
per lo sviluppo della Relativita Ristretta Planckiana (RRP).
Energia di Planck. L’energia di Planck & definita come

hebd
=y

che in unita numeriche corrisponde a
E, ~ 1.956 x 10° J a2 1.2209 x 10" GeV.

Essa rappresenta il limite superiore teorico per ’energia concentra-
bile in un singolo evento localizzato nello spazio-tempo. In RRP, £,
gioca il ruolo che c riveste nella Relativita Ristretta: una costante
universale invariante, non superabile.

Lunghezza di Planck. La lunghezza di Planck ¢ definita come

hG
lp - 673,
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2 Postulati fondamentali della Relativitad Ristretta Planckiana (RRP)

con valore

l, =~ 1.616 x 107% m.

Essa rappresenta la scala minima di significativita spaziale: al di
sotto di [, il concetto classico di distanza perde validita. Qualsia-
si fenomeno fisico deve essere descritto tenendo conto di effetti
quantistici e gravitazionali.

Tempo di Planck. Il tempo di Planck e definito come

I, hG
e

t, = 5.391 x 107*s.

pari a

Esso rappresenta la durata minima fisicamente significativa di un
intervallo temporale. In cosmologia, corrisponde all’epoca primor-
diale in cui le descrizioni classiche dello spazio-tempo cessano di
essere applicabili.

Massa di Planck. Infine, la massa di Planck &

he
mp = 5,

con valore

my & 2.176 x 10 % kg.

Essa costituisce la massa caratteristica per cui gli effetti quantistici
e gravitazionali si bilanciano. Un corpo con massa pari a m, ha
un raggio di Schwarzschild dell’ordine della sua lunghezza d’onda
Compton, un risultato che segnala la soglia critica fra descrizione
quantistica e gravitazionale.

Ruolo delle scale di Planck nella RRP. Nella Relativita
Ristretta Planckiana, queste scale assumono un significato operativo:
- E, ¢ assunto come costante universale invariante, limite superiore
dell’energia. - [, e t, definiscono le soglie inferiori di misura dello
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2.1 Postulato 1 — Invarianza dell’energia di Planck

spazio e del tempo. - m,, funge da scala naturale di riferimento per
la massa, oltre la quale la descrizione classica non ¢ piu sufficiente.

Queste grandezze introducono un quadro concettuale in cui la
struttura dello spazio-tempo non ¢ piu indefinitamente divisibile,
ma vincolata da soglie fisiche precise. La RRP si propone di esten-
dere la coerenza della Relativita Ristretta incorporando tali limiti,
cosi come la Relativita di Einstein ha esteso la meccanica classica
imponendo 'invarianza di c.

2.1 Postulato 1 — Invarianza dell’energia di Planck

Il primo postulato della Relativita Ristretta Planckiana (RRP)
stabilisce che I’energia di Planck costituisce una costante universale,
analogamente a quanto avviene per la velocita della luce ¢ nella
Relativita Ristretta di Einstein. Tale costante rappresenta il limite
superiore invalicabile per ’energia associata a un singolo evento
fisico elementare o a un processo localizzato nello spazio-tempo.
L’energia di Planck & definita a partire dalle tre costanti fon-
damentali della fisica teorica: la costante di Planck ridotta A, la
velocita della luce ¢ e la costante di gravitazione universale G. Essa

¢ data da:
[ hcd
Ep == ?

Il valore numerico corrispondente risulta:
E, ~1.956 x 10°] =~ 1.2209 x 10" GeV.

Dalla stessa definizione emergono in maniera naturale altre
quantita di scala, che costituiscono i parametri caratteristici della
fisica planckiana:

hG

l, = SR 1.616 x 107 m,
l I
ty =L = hG . 5.301 x 1045,
c cd
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2 Postulati fondamentali della Relativitad Ristretta Planckiana (RRP)

E hc _
mp:?;’:,/azzww 10 %kg.

Queste grandezze definiscono le unitd naturali di Planck, che
segnano il confine tra la fisica classica relativistica e il dominio
quantistico-gravitazionale.

Il postulato di invarianza di FE, afferma che, cosl come c ¢
la stessa in tutti i sistemi inerziali indipendentemente dal moto
relativo, I’energia di Planck non dipende dallo stato inerziale di
osservazione: essa € una costante universale che vincola la dinamica
e la cinematica dei sistemi ad alta energia.

Dal punto di vista formale, il postulato puo essere espresso come:

EI’, = F, V sistemi di riferimento inerziali.

Ne consegue che nessun sistema fisico puo possedere un’energia
propria superiore a E,, poiché tale valore rappresenta un limite asin-
totico e invalicabile. In altre parole, se nella Relativita Ristretta il
vincolo fondamentale & rappresentato dall’impossibilita di superare
la velocita della luce, nella Relativita Ristretta Planckiana emerge
un vincolo duale: 'impossibilita di eccedere ’energia di Planck.

Questo postulato fornisce la base concettuale per 'intera strut-
tura della teoria, poiché tutte le successive formulazioni cinematiche
e dinamiche si costruiscono imponendo la coerenza matematica con
tale limite assoluto.

2.2 Postulato 2 — Equivalenza della misura temporale
in presenza di energia

1l secondo postulato della Relativita Ristretta Planckiana introduce
un’estensione fondamentale del concetto di tempo proprio. Nella
Relativita Ristretta di Einstein, il tempo proprio 7 di un osservatore
inerziale in moto con velocita v € connesso al tempo coordinato ¢
da un fattore di Lorentz (v):

- v(lv) —yh ()
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2.2 Postulato 2 — Equivalenza della misura temporale in presenza di
energia

In maniera speculare, la Relativita Ristretta Planckiana intro-
duce un fattore di estensione energetica yg(E), che lega il tempo
proprio di un sistema al suo contenuto energetico totale E. La
definizione formale é:

1
vp(E) = ————\  0<E<BE,

- (£)

La relazione tra tempo coordinato ¢ e tempo proprio 7 risulta
dunque modificata in:

dr
at = ye(E).

Questa equazione stabilisce che la misura del tempo non dipende
soltanto dallo stato di moto, ma anche dal contenuto energetico del
sistema fisico. Il parametro E/E, gioca un ruolo analogo a v/c, ma

in un dominio speculare: quello delle energie invece delle velocita.

Interpretazione fisica

o Per energie trascurabili rispetto a quella di Planck (E — 0),
si ha:

ve(E) =~ 1, dr = dt,

ossia il tempo proprio coincide con il tempo coordinato,
recuperando il limite classico.

 Per energie prossime al limite di Planck (E' — E,), il fattore

vg diverge:
S VE(E) = +0o0,
conseguentemente:
. dr .
m — =
E—E, dt >

Questo implica che il tempo proprio accelera indefinitamente ri-
spetto al tempo coordinato: un effetto opposto alla dilatazione
temporale relativistica classica.
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2 Postulati fondamentali della Relativitad Ristretta Planckiana (RRP)

Dimostrazione della coerenza matematica
La definizione di yg(FE) assicura che:

E
0< =<1 = ~7p(F)ell,+o0).
Ep

Pertanto:

dr

— >1,

dt —
ossia il tempo proprio di un sistema fisico in presenza di energia
scorre sempre piu velocemente rispetto al tempo coordinato. Il
limite inferiore d7/dt = 1 corrisponde a E = 0, mentre il limite

superiore ¢ asintotico, non raggiungibile fisicamente.

Conseguenze operative

1. Il tempo diviene una variabile dinamica non piu universale,
ma dipendente dal contenuto energetico del sistema.

2. L’effetto di accelerazione del tempo proprio costituisce una
nuova predizione fisica: sistemi ad altissima energia evolvono
internamente molto piu rapidamente di quanto non indichi il
tempo coordinato.

3. Questo postulato crea una simmetria speculare con la Relativi-
ta Ristretta: mentre in Einstein 'aumento di velocita rallenta
il tempo proprio, nella RRP 'aumento di energia accelera il
tempo proprio.

2.3 Postulato 3 — Simmetria speculare tra c ed £,

11 terzo postulato della Relativita Ristretta Planckiana (RRP) intro-
duce una simmetria formale tra la costante universale della velocita
della luce ¢ e l'energia di Planck Ej,. In Relativita Ristretta (RR),
la dinamica dei sistemi inerziali ¢ governata dal fattore di Lorentz



2.3 Postulato 3 — Simmetria speculare tra c ed £,

dove v rappresenta la velocita relativa tra due sistemi di riferi-
mento. Questo fattore genera fenomeni ben noti come la dilatazione
temporale e la contrazione spaziale.

In analogia, la RRP definisce un fattore di trasformazione planc-
kiano, costruito a partire dal rapporto tra I’energia del sistema e
I’energia di Planck:

1

2 )
E
1= (£)
dove 0 < E < E,. Questo fattore governa trasformazioni cine-
matiche che risultano speculari a quelle einsteiniane, ma con effetti
invertiti: accelerazione del tempo proprio e dilatazione spaziale.

Le trasformazioni generali tra due sistemi inerziali in regime
planckiano assumono la forma

VB =

¥ =g (x —ugt),

up
t/:')/E <t—02x>,
E

dove la quantita ug ¢ definita come

con cg una costante di velocita introdotta per garantire coerenza
dimensionale.

Queste relazioni mostrano che la RRP conserva la struttura
matematica della RR, ma sostituendo formalmente il rapporto v/c
con E/E,. Ne consegue che:

e per £ < E,, si ha yg = 1 e le trasformazioni si riducono a
quelle classiche newtoniane;

e perv <K ¢, siha~y, ~1elaRR recupera la meccanica classica.
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3 Cinematica planckiana

La simmetria v/c <+ E/E, stabilisce dunque un dualismo forma-
le tra la dinamica dei sistemi ad alta velocita e quella dei sistemi ad
alta energia, fornendo una nuova struttura di gruppo che mantiene
invariante 'intervallo planckiano:

sp = (cpt)” — |z|*.

In questo modo, la RRP estende la cinematica relativistica,
vincolando non solo le velocita massime raggiungibili, ma anche le
energie massime consentite a un sistema inerziale.

3 Cinematica planckiana

3.1 4-coordinate planckiane e nuova metrica

Per estendere la struttura spazio-temporale einsteiniana all’ambito
energetico-planckiano, introduciamo una nuova definizione di qua-
drivettore, che incorpora I’energia come parametro fondamentale
di trasformazione.

Definiamo la quattro-coordinata energetica come

X" = (cgt, x)
dove cg € una costante di velocita che assicura la coerenza dimen-
sionale, analoga al ruolo della velocita della luce ¢ nella Relativita
Ristretta classica.
La metrica adottata mantiene la forma minkowskiana:
Nuww = dla’g(lv -1,-1, _1)
cosi che l'intervallo planckiano risulti definito da:

sip = (cpt)? — |2,

Questa struttura garantisce l'invarianza dell’intervallo sotto
trasformazioni di boost planckiani.
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3.1 4-coordinate planckiane e nuova metrica

Parametro di boost energetico. Il parametro di boost energetico
¢ definito come:

u E
Bp=-"2=—, |Bel<1

Cg Ep ’
dove E rappresenta l’energia caratteristica del sistema inerziale
considerato, ed E), ¢ I'energia di Planck, limite superiore invalicabile.
Il corrispondente fattore di Lorentz planckiano ¢ dato da:

1
YE = 7%1—6]23'

Dimostrazione di coerenza con il formalismo relativistico.
Consideriamo due sistemi inerziali planckiani, in moto relativo con
energia associata E. L’invarianza dell’intervallo richiede che:

cpt ) — |x'|° = (cgt)” — |x|” = s%.
(cat’)? — [P = (cpt)? — |a|* = s

Le trasformazioni compatibili con tale condizione devono neces-
sariamente coinvolgere il parametro Sy = E/E,. Applicando la
definizione di g, si verifica che il boost planckiano soddisfa la
relazione:

Bpn By =1,
ossia appartiene al gruppo SO(1,3), confermando che la struttura
algebrica della cinematica resta identica a quella della Relativita
Ristretta, con la sostituzione:
v R E
c E,
Interpretazione fisica.

1. Per F' < E),, siha yg ~ 1, e la cinematica planckiana si riduce
alla forma classica, recuperando i risultati della Relativita
Speciale.

2. Per E — E,, il fattore yg — oo, indicando che il tempo
proprio accelera indefinitamente, introducendo una dinami-
ca radicalmente diversa rispetto alla dilatazione temporale
einsteiniana.
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3 Cinematica planckiana

3.2 Boost energetici: parametro g e fattore vg

11 cuore della Relativita Ristretta Planckiana (RRP) risiede nella
sostituzione concettuale del parametro di boost classico, espresso in
termini di velocita relativa v rispetto alla costante fondamentale c,
con un nuovo parametro energetico che mette in relazione l’energia
di un sistema fisico con I'energia di Planck F,.

Definizione del parametro di boost energetico.
Si definisce il parametro adimensionale:

Ug FE
BEZi:ia |6E‘<17
Cp Ep
dove F rappresenta l’energia associata al sistema inerziale consi-
5 < . . N .
derato, £, = \/% ¢ l'energia di Planck, e cg € una costante di

velocita introdotta per mantenere la consistenza dimensionale delle
trasformazioni. La condizione |Sg| < 1 garantisce che 'energia di
un sistema non superi mai £}, analogamente a come nella Relativita
Ristretta classica non ¢ possibile avere |v| > c.

Definizione del fattore di Lorentz planckiano.
Il fattore di dilatazione energetica, analogo al fattore di Lorentz
v, € definito come:

1

Esplicitando in funzione dell’energia del sistema:

N
- (8)
Analisi dei limiti.
1. Per energie molto inferiori a quella di Planck:
E<E, = 7yp~l1,

il che implica che le trasformazioni planckiane coincidono con
quelle classiche, recuperando la meccanica di Newton.
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3.3 Invariante planckiano e struttura del gruppo di simmetria

2. Nel limite di energie prossime a F,:
E—FE, = ~g— 00,

si osserva un’accelerazione indefinita del tempo proprio e una
dilatazione spaziale, in simmetria con la dilatazione temporale
e la contrazione spaziale della Relativita Ristretta classica.

Osservazione sulla simmetria.

La struttura formale delle trasformazioni planckiane risulta
speculare a quella della Relativita Ristretta: mentre il vincolo fon-
damentale di Einstein é rappresentato dalla costanza della velocita
della luce c, nella RRP il ruolo e assunto dall’invarianza dell’energia
di Planck £,. Questa dualita stabilisce un parallelismo matematico
tra e Eﬁp, entrambi vincolati da un limite insuperabile e regolati

da un fattore di Lorentz v o vg.

Dimostrazione della coerenza matematica.
Per verificare la consistenza formale del nuovo parametro, si
osservi che la funzione:

1
T) = —/——, | <1,

¢ analitica e crescente, con f(0) = 1 elim, ;- f(x) = +00. Ponendo
x = fg = E/E, si ottiene che v mantiene le stesse proprieta
formali del fattore di Lorentz classico, ma traslate nello spazio
energetico. Pertanto, l'intera struttura matematica della Relativita
Ristretta puo essere replicata sostituendo:

v R E
c E,

3.3 Invariante planckiano e struttura del gruppo di
simmetria

Il passo cruciale per la consistenza interna della Relativita Ristret-
ta Planckiana (RRP) ¢ la dimostrazione che lintervallo spazio-
energetico resta invariante sotto le trasformazioni di boost planckia-
no. Tale proprieta garantisce che la nuova cinematica sia fondata su
un gruppo di simmetria ben definito, analogo al gruppo di Lorentz.
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3 Cinematica planckiana

Definizione dell’intervallo planckiano.
Si definisce l'intervallo quadratico come:

s = (cpt)” — |7,
dove ¥ rappresenta la componente spaziale delle coordinate

planckiane e cg € la costante di velocita introdotta in §3.1.

Dimostrazione dell’invarianza.
Consideriamo una trasformazione di boost planckiano lungo
I’asse x:

' =vg(z — Brcgt),
t' =g (t—%x),

con fgp=FE/E, evyg = (1— 5%)*1/2.
Calcoliamo l'intervallo trasformato:

r

(cat')? — (2')? = 7 [(cnt — Brw)? — (= — Fpcst)?].
Sviluppando i quadrati e raccogliendo i termini si ottiene:
(ept')? = (2')? = 75(1 = BE)[(cpt)? — 27].
Poiché per definizione 7% (1 — %) = 1, segue che:
(cpt')’ = (2')* = (cpt)® — 2® = s,

ovvero l'intervallo planckiano e invariante sotto boost energetici.

Struttura di gruppo.
L’invarianza appena dimostrata implica che i boost planckiani
formano un gruppo con le seguenti proprieta:

1. Chiusura: la composizione di due boost planckiani € ancora
un boost planckiano, eventualmente accompagnato da una
rotazione di Wigner in 3D. In una dimensione si ha la legge
esatta:

Bt B

1+ BB
38
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3.4 Rotazione di Wigner in 3D (composizione di boost non collineari)

2. Esistenza dell’identitd: il boost nullo Sg = 0 lascia invariato
lo spazio-energia.

3. Esistenza dell’inverso: ad ogni boost con parametro Sg
corrisponde un boost inverso con parametro —fg.

4. Associativita: la composizione di boost rispetta la proprieta
associativa, come garantito dalla parametrizzazione tramite
rapidita energetica:

tanh(¢g) = g,

per cui:

B(¢2)B(¢1) = B(d1 + ¢2).

Interpretazione.

L’insieme delle trasformazioni planckiane preserva l'invarianza
dell’intervallo s% e genera un gruppo isomorfo a SO(1,3), esatta-
mente come nel caso della Relativita Ristretta classica. La differenza
risiede nel fatto che il parametro fondamentale non ¢ piu il rappor-
to v/c, ma la quantita adimensionale E/E,, vincolata dal limite
|E| < E,. Questo stabilisce un parallelismo formale e al tempo stes-
so un’estensione concettuale, che radica la dinamica relativistica
nello spazio delle energie oltre che nello spazio-tempo.

3.4 Rotazione di Wigner in 3D (composizione di
boost non collineari)

Nella Relativita Ristretta Planckiana (RRP), come nella Relativita
Ristretta di Einstein, la composizione di due boost non collineari
non produce semplicemente un ulteriore boost, ma genera anche una
rotazione supplementare detta rotazione di Wigner (o di Thomas).
Questo fenomeno € una conseguenza diretta della non commuta-
tivita dei boost nello spazio delle trasformazioni di Lorentz e ne
preserva la struttura di gruppo.

Convenzioni.
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3 Cinematica planckiana

Siano dati due boost planckiani caratterizzati da energie F; e
E5, direzioni unitarie 71,715 e parametri energetici:

E; 1

= Fp? Vi = 7@7

con tanh(¢;) = B;, cosh(¢;) = 4, sinh(¢;) = Vi ;.
Composizione dei boost.
Il prodotto di due boost planckiani ¢ della forma:

Bp(fa, ¢2) Be(fn, ¢1) = Rw (Q, k) Be(ina, d12),

dove Ry ¢ la rotazione di Wigner di angolo ) attorno all’asse
k I (n2 x 1), e Br(fi2,¢12) € un boost equivalente lungo la
direzione risultante fi15.

La direzione del boost risultante é:

o plha+8h

ne=—F/—-;
1Bl + B

¢i = artanh(/3;),

dove:
V= By - 1), By = Ba(fg — (Ag - An)in).

La legge di composizione energetica risulta identica a quella
einsteiniana con la sostituzione v/c — E/E,:

BB B
1+ 1) n(1+ 818Y)

Angolo di rotazione di Wigner.
L’asse di rotazione e:

pel2 X
|n2 X n1|
e 'angolo di rotazione {2 ¢ determinato da:
tan () /;‘ _ smh(¢>1/2) Slnh(¢2/2) (ﬁg X ﬁl)
2 cosh(¢1/2) cosh(¢2/2) + cos @ sinh(¢/2) sinh(go/2)’
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3.5 Algebra di Lie associata e isomorfismo con so(1,3)

dove cos 8 = g - fig.
In termini di v;, la stessa relazione diventa:

tan <Q> i VO — D2 — D)(fg x 7g) |
2 Vi +1)(y2 +1) 4+ cosby/ (11 —1)(72 — 1)

Limite debole.
Per piccoli valori dei parametri (|5;] < 1, ¢; = [5;), si ottiene lo
sviluppo al secondo ordine:

Qk & 3 BiBo (o x i),

che mostra come 'angolo di Wigner emerga al secondo ordine in 3,
in perfetta analogia con la Relativita Ristretta classica.

Proprieta di gruppo.
La presenza della rotazione di Wigner implica la non
commutativita dei boost planckiani:

Bp(hg, ¢2)Bg (i1, ¢1) # Br(na, ¢1)Be(s, ¢2).

Il “difetto di commutativita” ¢ compensato esattamente da una
rotazione, confermando che il gruppo delle trasformazioni planckiane
¢ isomorfo a SO(1, 3).

Interpretazione fisica.

La rotazione di Wigner rappresenta un effetto cinematico inevi-
tabile nella composizione di boost non collineari. Nella RRP essa
conserva tutte le proprieta note della Relativita Ristretta classica,
ma dipende dal rapporto energetico £/ E,. La sua presenza assicura
la coerenza interna del gruppo di simmetria e gioca un ruolo fon-
damentale nell’analisi delle trasformazioni di spin e delle proprieta
delle particelle ultra-energetiche.

3.5 Algebra di Lie associata e isomorfismo con so(1, 3)

La consistenza della Relativita Ristretta Planckiana (RRP) non ¢
garantita soltanto dallinvarianza dell’intervallo planckiano (§3.3),
ma anche dalla struttura algebrica dei generatori delle trasforma-
zioni. Analogamente alla Relativita Ristretta classica, le simmetrie
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3 Cinematica planckiana

fondamentali della RRP sono descritte dal gruppo di Lorentz, la cui
algebra di Lie ¢ isomorfa a so(1,3). In questa sezione dimostriamo
che i generatori delle rotazioni e dei boost energetici soddisfano
esattamente le stesse relazioni di commutazione.

Generatori delle rotazioni e dei boost energetici

Consideriamo lo spazio planckiano con coordinate quadridimensio-
nali:

XH* = (cpt, ), =012 3.
I generatori delle rotazioni spaziali J; e dei boost energetici K; sono

definiti in analogia alla rappresentazione canonica del gruppo di
Lorentz:

(Ji)h, = Z'((Sf(sju —0%64), (KG)h, = i(éé‘éiu + 5%01/),

J

dove 7,7 = 1,2,3 e 0¥ ¢ il delta di Kronecker.

Relazioni di commutazione

Calcoliamo i commutatori tra i generatori:
1. Tra rotazioni:

[Ji, J;] = i €.
2. Tra rotazioni e boost energetici:
[Ji, K] = i€ K.
3. Tra boost energetici:
(K, K| = —i€jp .

Queste tre relazioni sono identiche a quelle dell’algebra di Lie
del gruppo di Lorentz classico.
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Isomorfismo con so(1, 3)

Le relazioni di commutazione sopra riportate definiscono 'algebra
so(1,3), che governa le simmetrie dello spazio di Minkowski. Ne
consegue che il gruppo delle trasformazioni della RRP, costruito a
partire dai boost energetici parametrizzati da g = E/E, e dalle
rotazioni spaziali ordinarie, & isomorfo al gruppo di Lorentz classico:

grrp = so(1,3).

Osservazioni

o L’invarianza dell'intervallo planckiano (§3.3) e la struttura di
gruppo garantita da queste relazioni mostrano che la RRP e
matematicamente consistente e perfettamente integrata nella
cornice delle teorie di simmetria relativistiche.

« La sostituzione v/c — E/E, non altera I’algebra sottostante,
ma ne offre una nuova interpretazione fisica: i limiti cinematici
non riguardano la velocita, bensi 1’energia.

» L’isomorfismo con so(1,3) implica che la teoria puo essere
trattata con gli stessi strumenti rappresentazionali usati in
teoria dei campi relativistici, inclusa la decomposizione in
rappresentazioni irriducibili (scalari, spinori e tensori).

4 Tempo proprio e clock planckiano

4.1 Separazione fra tempo geometrico e tempo fisico

Nella Relativita Ristretta di Einstein il tempo proprio 7 ¢ definito
a partire dall’intervallo minkowskiano:

1 1
dr* = < ds* = dt* — — dz?,
C C

che rappresenta una quantita puramente geometrica, indipendente
dallo stato energetico del sistema.

Nella Relativita Ristretta Planckiana (RRP), invece, occorre
distinguere due nozioni di tempo:
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4 Tempo proprio e clock planckiano

1. Tempo proprio geometrico, definito dall’invariante planckiano
introdotto in §3.1:

1 1

2 2 2 =2

ATgeo = = dsp =dt* — = dz=,
E E

dove cp e la costante di velocita che garantisce omogenei-
ta dimensionale. Questa definizione mantiene la struttura
lorentziana della cinematica.

2. Tempo proprio fisico, ovvero la misura effettiva scandita da un
“orologio planckiano”, che tiene conto della dipendenza ener-
getica del flusso temporale. Esso viene ottenuto introducendo
il fattore yg(E) definito in §3.2:

dTphys = rYE'(EI) dTgeO) '}/E(E) =

Dimostrazione della coerenza.
Partendo dall’intervallo planckiano:
s = (cpt)® — |7,

si definisce come in RR il tempo proprio geometrico:
1 S
ATgeo = —1\/ (cpdt)? — d22.
CE

Poiché tale quantita ¢ invariante sotto i boost planckiani, es-
sa fornisce una misura universale indipendente dal sistema di
riferimento.

Tuttavia, per incorporare il postulato 2 della RRP, secondo cui
il tempo proprio dipende dall’energia totale F, si introduce una
correzione moltiplicativa tramite yg(E). La costruzione:

dTphys =YE (E ) dTgeo
garantisce che:
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4.2 Accelerazione del tempo proprio per £ — E,

e per £ < E, si ha 7yg = 1 e dunque drmphys =~ d7geo,
recuperando il limite einsteiniano;

e per ' — E,, vg — oo e il tempo fisico diverge rispetto a
quello geometrico, introducendo 'effetto di accelerazione del
tempo proprio.

Interpretazione.

La separazione fra tempo geometrico e tempo fisico consente
di preservare la struttura matematica del gruppo di simmetria
(che resta isomorfo a SO(1,3)) e, al contempo, di introdurre un
effetto dinamico nuovo, direttamente collegato all’energia. In questo
quadro, il tempo proprio non ¢ soltanto una variabile geometrica
derivata dalla metrica, ma diventa una grandezza fisica dipendente
dal contenuto energetico del sistema considerato.

4.2 Accelerazione del tempo proprio per £ — E,

Un aspetto distintivo della Relativita Ristretta Planckiana (RRP) &
la predizione che il tempo proprio misurato da un sistema fisico non
rimane invariato al crescere dell’energia, ma subisce un’accelerazione
quando I'energia totale E si avvicina al limite universale F,,.

Definizione formale.
Dal postulato 2 (§2.2) il tempo proprio fisico ¢ legato al tempo
geometrico dall’espressione:

dronys = 16(E) drggor 5(E) = ———.
1— (£
(%)
Analisi dei limiti.
1. Per energie molto inferiori a quella di Planck:
EK Ep = ’yE(E) ~ 1,
e dunque:

dTphys ~ dTgeo )

recuperando il comportamento della Relativita Ristretta di
FEinstein.
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4 Tempo proprio e clock planckiano

2. Nel limite di energie prossime a F):
E—E, = ~vg(F)— +o0,

per cui il tempo fisico cresce indefinitamente rispetto al tem-
po geometrico. Si parla di accelerazione del tempo proprio,
fenomeno speculare alla dilatazione temporale della RR.

Dimostrazione esplicita.

Consideriamo un osservatore inerziale che misura il tempo pro-
prio di un sistema con energia F. L’integrale del tempo fisico lungo
una traiettoria e:

Tphys = / YE(E) dTgeo-

Se F rimane costante durante 1’evoluzione, si ottiene:

Tphys = VE(E) Tgeo-

Pertanto, per un intervallo di tempo coordinato At con moto
rettilineo uniforme (d = 0):

ATgeo = At, ATphys = YE(E) At.

Quindi, al crescere di E, I'intervallo di tempo proprio fisico registra-
to dal sistema aumenta piu rapidamente dell’intervallo di tempo
coordinato. In particolare, al limite £ — E:

ATphys
_ 0.
At T

4.3 Interpretazione fisica e possibili osservabili

La separazione tra tempo geometrico e tempo fisico (§4.1) e 'acce-
lerazione del tempo proprio per E — E,, (§4.2) hanno conseguenze
profonde non soltanto concettuali, ma anche empiriche. In questa
sezione discutiamo l'interpretazione fisica di tali effetti e indivi-
duiamo alcuni possibili osservabili in grado di testare la Relativita
Ristretta Planckiana (RRP).
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4.3 Interpretazione fisica e possibili osservabili

Interpretazione fisica.

Nella Relativita Ristretta classica, il parametro fondamentale ¢ la
velocita relativa v, limitata da ¢, e 'effetto principale ¢ la dilatazione
temporale. Nella RRP, invece, il parametro fondamentale & I’energia
E limitata da FE,, e I'effetto principale ¢ 'accelerazione del tempo
proprio.

Il parallelismo tra le due teorie ¢ riassumibile come segue:

ol

E
— At = At —  ATphys = 7e(E)AL.
P
Questa simmetria suggerisce che la struttura dello spazio-tempo-
energia obbedisca a principi di dualita: la costanza di ¢ vincola le
trasformazioni cinematiche nello spazio-tempo, mentre I'invarianza
di E), vincola le trasformazioni cinematiche nello spazio-energia.

Possibili osservabili.

1. Raggi cosmici ultra-energetici. Per energie dell’ordine F ~
10?2 eV, vicine ma non pari a E,, la correzione introdotta
da g potrebbe produrre deviazioni misurabili negli spettri
energetici osservati da esperimenti come Auger e Telescope
Array. In particolare, si prevede una modifica nella distribu-
zione angolare e nell’attenuazione del flusso sopra la soglia di

GZK.

2. Oscillatori naturali ad alta energia. Sistemi con frequen-
ze intrinseche v prossime a v, = +/c®/(RG) vedrebbero
un’accelerazione della frequenza osservata, con:

Vobs = ’7E<E) Vgeo,

il che porterebbe a uno shift misurabile rispetto alla previsione
relativistica classica.

3. Buchi neri e collassi gravitazionali. Nei processi di collasso ver-
so densita planckiane, il tempo fisico interno potrebbe accele-
rare rispetto a quello esterno, generando segnali gravitazionali
con frequenze modificate secondo:

f bs = fgeo
o fYE(Ecurv)
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5 Dinamica estesa

Questa deviazione potrebbe essere testata con gli interfero-
metri gravitazionali di nuova generazione (Einstein Telescope,
Cosmic Explorer).

4. Cosmologia primordiale. Durante le epoche in cui I'energia
media per grado di liberta si avvicinava a £, la rapidissima
accelerazione del tempo proprio avrebbe potuto determinare
una fase di espansione ultra-veloce, alternativa o complemen-
tare all’inflazione. Cio produrrebbe impronte osservabili nello
spettro delle anisotropie cosmiche della radiazione di fondo

(CMB).

Sintesi.

Gli osservabili proposti mostrano che la RRP non ¢ soltanto
un costrutto matematico, ma fornisce predizioni fisiche concrete,
confrontabili con dati sperimentali e osservativi. L’identificazione
di firme univoche legate all’accelerazione del tempo proprio rap-
presenta la via maestra per testare e, se necessario, falsificare la
teoria.

5 Dinamica estesa

5.1 Estensione dell’azione di Einstein—Hilbert con
YE

Per estendere la dinamica gravitazionale alla Relativita Ristretta
Planckiana (RRP) si introduce una modifica all’azione di Ein-
stein—Hilbert, in modo da includere 'effetto del fattore planckiano
~vg. L’idea di base ¢ che I'energia effettiva di un sistema non si tradu-
ca integralmente come sorgente della curvatura, ma sia “attenuata”
da un peso dipendente da g, definito come

1
1o(E) = ———, 0<E<BE,

1-(£)

dove E, ¢ I'energia di Planck.



5.1 Estensione dell’azione di Einstein-Hilbert con vg

Si definisce allora il peso planckiano della materia come

1 E\
JE) = omp =1 (E) |

L’azione totale della teoria assume la forma:

S =5, + S,

dove:

4
Sy = 16G/daj\/ (R —2A)

¢ il termine gravitazionale usuale di Einstein-Hilbert, e

S5 = [ e =g £(E) Lulg.v)

¢ il termine di materia “ponderato” dal fattore f(FE).

In questa formulazione, L, rappresenta la lagrangiana canoni-
ca della materia, mentre f(£) modula la sua capacita di genera-
re curvatura. Si recupera cosi, al livello variazionale, un tensore
energia—impulso efficace del tipo:

eff
T = f(E) T
Osserviamo che, nel limite £ < E),, si ha f(E) — 1, quindi:
T — T,

e l'azione totale si riduce a quella della Relativita Generale standard.

Questa scelta e coerente con i postulati della RRP: il limite supe-
riore di energia ), si traduce, a livello dinamico, in un’attenuazione
progressiva delle sorgenti di curvatura man mano che I'energia si
avvicina a E,. In particolare, per £ — E), si ha f(E) — 0, e la ma-
teria non contribuisce piu alla curvatura, evitando cosi divergenze
e singolarita.

In sintesi, I'estensione dell’azione di Einstein—Hilbert con il
fattore yp realizza un meccanismo di “protezione planckiana” della
dinamica gravitazionale, assicurando la continuita con la teoria di
Einstein a basse energie e introducendo nuove proprieta nel regime
ultra-energetico.
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5 Dinamica estesa

5.2 Derivazione variazionale: equazioni di campo
modificate

A partire dall’azione estesa introdotta nella sezione precedente,

o C
- 167G

con

/ d'e /=g (R — 2A) + / d'z /= (E) Lunlg, ),

1 £\ |
f(E)_ﬁ;_1<Ep> ; VE(E)—l_(g)Q,

si ottengono le equazioni di campo modificate tramite variazione
rispetto alla metrica g"”.

Variazione del termine gravitazionale.

55y = 1 G/d"‘x\ﬁ (G + Agp) g

Variazione del termine di materia. Il termine di materia esteso
&

S = [ da =g F(E) Lulg. ).

La sua variazione &
5560 = 2 [ e =g 1 (B) Ty 69

dove

Ty = ——— Az /=g Lo
! V=g dgh I

¢ il tensore energia—impulso canonico della materia.
Poiché f(F) non dipende esplicitamente da g"”, esso esce dalla
variazione come fattore moltiplicativo.
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5.3 Conservazione, identita di Bianchi e consistenza matematica

Equazioni di campo. Richiedendo 4.5 = 0 per variazioni arbitrarie
di g", si ottiene:

8rG
Gm/ + Ag/u/ = CT f(E> Tuw

Introducendo il tensore energia—impulso efficace,
(eff) 1
T/_Ll/ = f(E) TMV = TT/UM
TE

le equazioni assumono la forma compatta:

G

G + Aguw = A Tp(niff)~

Discussione. Il risultato mostra che la curvatura spazio-temporale
non € piu proporzionale direttamente all’energia della materia, ma a
una versione “attenuata” da f(E). Questo garantisce che, per £ <
E,, si recuperi il limite della Relativita Generale ordinaria, mentre
per &/ — E, il contributo della materia si annulli progressivamente,
prevenendo divergenze nella curvatura.

La derivazione variazionale dimostra quindi che l'invarianza
dell’energia di Planck si riflette in una modifica diretta delle equa-
zioni di Einstein, senza alterare la struttura geometrica di base ma
modificando il ruolo dinamico della sorgente di curvatura.

5.3 Conservazione, identita di Bianchi e consistenza
matematica

Un requisito fondamentale di ogni estensione coerente della Re-
lativita Generale ¢ la compatibilita con I'identita di Bianchi, che
assicura la consistenza matematica delle equazioni di campo e la
conservazione dell’energia-impulso. Nella Relativita Ristretta Planc-
kiana (RRP), la presenza del fattore di attenuazione energetica
~g modifica il tensore energia-impulso, ma la struttura geometrica
rimane vincolata dalle proprieta differenziali del tensore di Einstein.

o1



5 Dinamica estesa

Identita di Bianchi

Per la curvatura riemanniana vale l'identita differenziale:
VG, =0,

dove G, = Ry — %gwR ¢ il tensore di Einstein. Questa identi-
ta, puramente geometrica, non dipende dalla scelta della materia
sorgente e garantisce la coerenza formale delle equazioni di campo.

Equazioni di campo RRP
Le equazioni di campo nella formulazione planckiana sono:

817G (e
G;w + Aguu = 7Téyff)u

con

1
Tislefff) = 5 L,
TE

dove T, ¢ il tensore energia-impulso ordinario della materia. La
funzione di attenuazione e definita come:

1
1e(E) = ——, (0 FE<E,.

2\ 2
(#)
Compatibilita con I’identita di Bianchi
Applicando la derivata covariante all’equazione di campo, si ottiene:

G

V(G + Agur) = = VT,

Poiché¢ V*G,, = 0 e V#g,, = 0, segue:
eff) —
VT D = 0.

Questo vincolo & soddisfatto se vp e costante. In tale caso,
I’energia-impulso effettiva si conserva esattamente, analogamente
alla Relativita Generale.
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5.3 Conservazione, identita di Bianchi e consistenza matematica

Caso con g = vg(z) variabile

Se il fattore planckiano dipende dalle coordinate spazio-temporali,
vE = ve(x), il calcolo produce:

VAT D = T, V* (In93) .
Appare quindi una sorgente di scambio:
Q, =T,V" (ln ’y%) ,

che rappresenta un trasferimento di energia e quantita di moto tra
il settore della materia e quello del campo planckiano associato a
~vg. La conservazione totale del sistema rimane comunque garantita,
poiché la corrente (), ¢ interpretata come contributo del settore
geometrico-energetico.

Consistenza matematica

La formulazione planckiana ¢ matematicamente consistente in
quanto:

e per vg = const. si recupera la conservazione standard
VH#T,, = 0 e dunque la Relativita Generale;

o per vg = vp(z) la violazione apparente della conservazione

in Té,e,f )& bilanciata dall’introduzione di ., garantendo la
chiusura delle equazioni di campo;

e l'identita di Bianchi rimane valida, poiché € una proprieta
geometrica indipendente dalle modifiche introdotte.

Osservazione conclusiva

La struttura differenziale delle equazioni di Einstein viene pre-
servata integralmente. L’unica novita introdotta dalla RRP e la
modulazione energetica del tensore materia, che agisce come pe-
so dinamico e garantisce ’assenza di divergenze ultraviolette per
E — E,, mantenendo intatta la consistenza matematica globale
del sistema.
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5 Dinamica estesa

5.4 Tensore energia-impulso efficace

Un aspetto cruciale della Relativita Ristretta Planckiana (RRP) ¢ la
ridefinizione del tensore energia-impulso, che incorpora il fattore di
attenuazione energetica vg. Questa modifica assicura che, al crescere
dell’energia verso la scala di Planck E,, I'effetto gravitazionale della
materia non diverga, preservando la consistenza matematica e fisica
della teoria.

Definizione
Si parte dal tensore energia-impulso standard della materia:
2 0S5,
T;w )
V=939

dove S, ¢ l'azione della materia. Nella RRP si introduce una
correzione universale legata al fattore planckiano:

1
T(iff) = T,
. %"
con

1
vp(E) = ————  0<E<BE,

(&)

Questo implica che 'effetto gravitazionale di una sorgente di energia-
impulso ¢ ridotto di un fattore 1/7%.

Derivazione variazionale

L’azione totale comprende il termine gravitazionale e quello della
materia “ponderata’:
3 4 4 1
/d zy/—g(R—2A) + /d T/ ~9—5 L.
e

5= 167G

Variando rispetto alla metrica g"”, si ottiene:

v — = —5Tw,
8 V=g dgm "
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5.4 Tensore energia-impulso efficace

dove Sfﬁf 7) ¢ l'azione di materia modificata.

Equazioni di campo

Le equazioni di Einstein assumono la forma:

G &G
G#V + Ag#u = CTT/Eiff) = A2 Tl“"
TE

Il contributo della materia ¢ quindi modulato da ~g, che dipende
dallo stato energetico considerato. Nel limite £ < £, si recupera
la Relativita Generale ordinaria.
Proprieta di conservazione
Dall’identita di Bianchi segue:

VT — 0,
Se vg = const., la conservazione coincide con quella standard:

Vi, = 0.

Se invece vg = 7yp(z) varia nello spaziotempo, si introduce un
termine di scambio:

VAT = 1, V" (m ﬁ;) ,
che descrive un trasferimento di energia-impulso con il settore
planckiano, mantenendo comunque la conservazione totale del
sistema.
Interpretazione fisica

Il tensore energia-impulso efficace rappresenta il “peso gravi-
tazionale” della materia in presenza della scala di Planck. In
particolare:

e per F <K E, T,Ef;f D~ T,,, e la dinamica coincide con la
Relativita Generale;

e per B — B, T;Siff) — 0, e la sorgente perde la capacita di
generare curvatura infinita, evitando singolarita.
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6 Soluzioni fisiche

Esempi applicativi

1. Cosmologia FLRW: I'energia e la pressione efficaci sono:
Peff = o Deff = —
’y% ) ’y% I

portando alle equazioni di Friedmann modificate.

2. Buchi neri: la massa efficace risulta:

M
Mepy = %,

e lorizzonte di Schwarzschild si riduce a:

ety _ 2GMeps
s CQ :

Consistenza matematica

La definizione di T,Sif 5 preserva:
o la simmetria e la forma tensoriale del tensore energia-impulso;
¢ la compatibilita con I'identita di Bianchi;

« la riduzione corretta alla Relativita Generale per basse energie.

Conclusione

Il tensore energia-impulso efficace costituisce la chiave dinamica
della RRP: introduce una regolarizzazione naturale delle sorgenti
gravitazionali senza rompere la struttura matematica della teoria,
fornendo un meccanismo concreto per la risoluzione delle singolarita
cosmiche e dei buchi neri.

6 Soluzioni fisiche

6.1 Recupero del limite GR per £ < E,

Un requisito fondamentale di qualsiasi estensione della Relativita
Generale (RG) ¢ il principio di riduzione, ossia la garanzia che nel
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6.1 Recupero del limite GR per FF < F,

limite di basse energie le nuove equazioni si riducano a quelle clas-
siche di Einstein. Nel quadro della Relativita Ristretta Planckiana
(RRP), questo principio si realizza attraverso il comportamento del
fattore planckiano:

2
E
- (£)
dove E, = \/hc’/G & l'energia di Planck.

Espansione perturbativa per I/ < FE,. Per energie molto
inferiori a E, si ha ¢ = E/E, < 1, e I'espansione di v fornisce:

ve(e) =1+ 1 + 2e' + O(%).
Ne consegue che:
1 2 4
— =1—-+0().
TE

Questa relazione mostra che la correzione planckiana al tensore
energia-impulso ¢ trascurabile nel limite € — 0, e il formalismo si
riduce alla RG classica.

Equazioni di campo. Nella RRP le equazioni di Einstein
modificate assumono la forma:

)

1
T;Siff) = 5l

GG
G#V + Aglw = CT T;Siff) 72

Per ' < E,, vg = 1, e si recuperano le equazioni classiche:

rG

G + Mg = T T
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6 Soluzioni fisiche

Soluzioni cosmologiche. Nel caso della metrica FLRW, le
equazioni di Friedmann modificate sono:

o2 &G p  kc? A702

i 4nGp+3p/c +A702

a 3 V2 3

Per vg — 1, queste si riducono esattamente alle equazioni
cosmologiche standard di Einstein—Friedmann.

Soluzioni statiche sferiche. Per una distribuzione sferica di
massa M, la massa efficace nella RRP e:
M

0

Nel limite & < E,, si ha Mcyy =~ M, e la metrica Schwarzschild
planckiana:

2G M, 2G Mg\
d52:<1—G ff>02dt2—<1—G ff) dr? — r2d0>?

Meysy

c2r c2r

si riduce alla metrica di Schwarzschild classica.

Consistenza matematica. Il recupero del limite GR garantisce
che:

o la teoria RRP sia localmente indistinguibile dalla RG per
energie sub-planckiane;

« siano rispettatii test classici della RG (precessione del perielio,
deflessione della luce, onde gravitazionali);

« la RRP si ponga come estensione coerente e regolare, senza
contraddire i risultati sperimentali consolidati.

Pertanto, il limite £/ < F), rappresenta una verifica cruciale di
consistenza, assicurando che la Relativita Ristretta Planckiana si
riduca al paradigma einsteiniano nel dominio gia osservato.
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6.2 Cosmologia planckiana: Big Bounce e scenari inflazionari modificati

6.2 Cosmologia planckiana: Big Bounce e scenari
inflazionari modificati

Uno degli ambiti piu significativi in cui la Relativita Ristretta
Planckiana (RRP) produce effetti ¢ la cosmologia primordiale. Le
modifiche introdotte al tensore energia—impulso e alle equazioni di
Friedmann conducono infatti a scenari in cui la singolarita iniziale
del Big Bang viene sostituita da un Big Bounce, e i meccanismi
inflazionari standard vengono riformulati in termini planckiani.

Equazioni di Friedmann modificate. A partire dalle equazioni
di campo planckiane:

81G 1
G;w + Agul/ = TTlSiff)7 T;Siff) = TT,LLIM
¢ TE

si ricavano le equazioni di Friedmann per un universo FLRW:

2 8rG p kc? Aic2

7_’_ ,
3 7% a? 3

i 4nGp+3p/ AP

a 3 V2, 3

Regime ad alta energia e rimozione della singolarita. Nel
limite &/ — E,, il fattore planckiano diverge:

1
Ve(E) = ——e . — 4o,

1 —(E/Ep)?

Di conseguenza, i termini con p e p nelle equazioni cosmologiche
vengono attenuati:
P
— = Pefr K p.
B
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6 Soluzioni fisiche

Questo implica che, anche se p cresce verso densita planckia-
ne, il contributo gravitazionale effettivo si satura. In particolare,
I’equazione:
=¥
3 e

non diverge mai, e ammette un minimo a,,;, > 0 per il fattore di
scala. Questo corrisponde a un rimbalzo cosmico (Big Bounce), in
cui la contrazione dell’universo viene arrestata e sostituita da una
fase di espansione regolare.

Dinamica del Big Bounce. Per un fluido dominato da energia
di radiazione (p = pc?/3), si ottiene:

a 87G p  Ac?

a 3 3 3
Nel limite p — p, ~ E7/(hc)?, il termine (p/73) tende a un valore
finito, impedendo la divergenza di d/a e assicurando che a(t) non si

annulli mai. La soluzione cosmologica ammette dunque un rimbalzo
regolare.

Scenari inflazionari modificati. Nel contesto inflazionario stan-
dard, I’espansione accelerata ¢ guidata da un campo scalare ¢ con
potenziale V(¢). Nella RRP, I'energia efficace del campo é:

pessté) = 5 (562 +V(0)).

L’equazione di Friedmann diventa:

G

H? = Tﬂeff(¢)~

Per ¢> < V(¢) si ha inflazione, ma con un tasso di espansione
ridotto rispetto al caso standard a causa del fattore 1/v%. Questo
comporta:

o un numero di e-folds dipendente dall’energia planckiana locale;
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6.3 Buchi neri regolari e attenuazione delle singolarita

e una possibile riduzione della durata dell’inflazione;

o modifiche agli spettri delle perturbazioni primordiali, con
deviazioni testabili.

Predizioni osservabili. Le principali conseguenze cosmologiche
SONo:

1. Rimbalzo regolare: assenza di singolarita iniziale, con
Apmin > 0;

2. Inflazione attenuata: lo scenario inflazionario persiste ma
con dinamica modificata dal fattore planckiano;

3. Spettri cosmologici: deviazioni nei parametri spettrali ng e
r, legate a correzioni planckiane.

Conclusione. La cosmologia planckiana fornisce un’alternativa
coerente al Big Bang singolare, introducendo un Big Bounce regolare
e una fase inflazionaria modificata. Questo quadro apre la strada a
predizioni testabili tramite osservazioni cosmologiche di precisione,
come le anisotropie del fondo cosmico a microonde e lo spettro delle
onde gravitazionali primordiali.

6.3 Buchi neri regolari e attenuazione delle
singolarita

La Relativita Ristretta Planckiana (RRP) introduce una modifi-
ca fondamentale alle sorgenti gravitazionali attraverso il tensore
energia—impulso efficace:

1
J1— (B/E)?

che comporta un’attenuazione del contributo energetico nelle equa-
zioni di campo di Einstein. Questo meccanismo ha implicazioni
profonde sulla struttura interna dei buchi neri e sulla rimozione
delle singolarita.

. 1

61



6 Soluzioni fisiche

Massa efficace e soluzione di Schwarzschild planckiana.
Consideriamo una sorgente sfericamente simmetrica con massa M.
Nella RRP, la massa gravitante percepita dallo spaziotempo esterno
e ridotta a:
M
Mgy = —5-
e ’y%

La metrica esterna assume la forma:
2GM, 2G M, 5\ 1
2 eff\ 24,2 eff 2 2 102
1l raggio di Schwarzschild efficace € quindi:

2G M, 1 2GM
Tgeff) = — ff = % CQ .

C

Comportamento planckiano. Nel limite &/ < E), si ha vg ~ 1
e M.y ~ M: si recupera la soluzione classica di Schwarzschild. Nel
regime opposto, quando £ — E,, il fattore yg — 0o, quindi:

Mg —0, v 0.

Questo implica che la formazione di un orizzonte si arresta per
masse prossime alla scala di Planck, e la singolarita centrale viene
eliminata in quanto il campo gravitazionale si attenua oltre la soglia
planckiana.

Soluzioni regolari e confronto con modelli noti. L’effetto
della RRP & concettualmente analogo a quello dei modelli di buchi
neri regolari (Bardeen, Hayward, Dymnikova), in cui il tensore
energia—impulso viene modificato da campi quantistici o semiclassici
per eliminare la singolarita. Qui, tuttavia, la regolarita emerge da
una legge universale di attenuazione:

Ty
2

TE

eff) _
TE =

che agisce in maniera covariante e indipendente dal tipo di materia
sorgente. La divergenza dell’energia interna a r — 0 viene soppressa
dalla crescita illimitata di vg, che compensa 'aumento di densita.
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6.3 Buchi neri regolari e attenuazione delle singolarita

Estensione a Kerr e rotazione. Per un buco nero rotante, la
soluzione di Kerr con parametri (M, J) viene modificata sostituendo
M — M,ys. Il parametro di spin diventa:

J
Meffc’

Qeff =

che cresce all’aumentare di vg, portando a un indebolimento della
curvatura interna e a una dilatazione delle superfici caratteristiche
(ergosfera, orizzonti interni ed esterni). Anche in questo caso, nel
limite planckiano, ’orizzonte tende a dissolversi.

Attenuazione delle singolarita. Il tensore di Einstein:

8rG
( e/ /)
Glu,l/ C4 y Y
non diverge mai in quanto T,E ¢/7) & limitato dal fattore 1 / 7%, Per

densita p — p, ~ E}/(hc)?, il termine effettivo pesr = p/7% rimane
finito, impedendo che le invarianti scalari di curvatura (R, R, R"",
Ry p0 R1P7) divergano al centro. In tal modo, la geometria risulta
regolare e priva di singolarita.

Implicazioni fisiche. Le principali conseguenze della regolariz-
zazione planckiana dei buchi neri sono:

1. Assenza di singolarita centrale: la densita e la curvatura
rimangono finite anche a r — 0;

2. Orizzonti modificati: il raggio di Schwarzschild e le superfici
caratteristiche sono ridotti da un fattore 1/v%;

3. Limite planckiano: al raggiungimento di energie vicine a
E,, Vorizzonte collassa e il buco nero si dissolve in uno stato
regolare;

4. Stabilita teorica: il meccanismo e intrinsecamente covariante
e non richiede ipotesi ad hoc sulla materia sorgente.
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6 Soluzioni fisiche

Conclusione. La Relativita Ristretta Planckiana fornisce un qua-
dro coerente per la costruzione di buchi neri regolari, in cui le
singolarita vengono sostituite da configurazioni geometriche finite
grazie al ruolo regolatore del fattore vg. Questa attenuazione univer-
sale delle sorgenti rappresenta una predizione distintiva della teoria
e apre la strada a scenari di gravita regolare verificabili tramite
osservazioni astrofisiche ad alta energia.

6.4 Onde gravitazionali ad alta energia

Uno degli ambiti pit promettenti per testare sperimentalmente la
Relativita Ristretta Planckiana (RRP) riguarda la propagazione
delle onde gravitazionali in regimi energetici prossimi alla sca-
la di Planck. In questo contesto, la correzione planckiana agisce
attraverso il tensore energia—impulso efficace:

. 1 1

Vb J1—(E/E,)?

che modifica la sorgente nelle equazioni di Einstein lineari.

Gravita linearizzata. Consideriamo la decomposizione pertur-
bativa della metrica:

Guv = Nuv + h;wa ’h;w| < 17

dove 7, ¢ la metrica di Minkowski. Introducendo la traccia inversa:

h,uy = hul/ - %nuuh> h = U“Vh;w,

e imponendo la gauge di Lorenz:

-
0" hy =0,
le equazioni di campo modificate assumono la forma:
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6.4 Onde gravitazionali ad alta energia

Propagazione nel vuoto. In assenza di sorgenti (7}, = 0),
I’equazione resta:

con soluzioni piane del tipo:
Byr() = R { A}

dove k%k, = 0 e Ay, soddisfa le condizioni di gauge. Pertanto, le
onde gravitazionali continuano a propagarsi alla velocita della luce
¢, senza violazioni della causalita.

Effetto planckiano sulle sorgenti. La differenza sostanziale
risiede nella riduzione dell’ampiezza prodotta dalle sorgenti ultra-
energetiche. In un evento astrofisico caratterizzato da energia F, il
tensore energia—impulso effettivo risulta ridotto da un fattore 1/7%.
L’ampiezza osservata per un’onda gravitazionale e quindi:

hobs X — hGR7
TE

dove hgpr € 'ampiezza prevista dalla Relativita Generale. Nel limite
E < E, si recupera hgps = hgr, mentre per £ — FE, I'emissione
gravitazionale viene soppressa.

Frequenza massima osservabile. Il legame tra energia carat-
teristica della sorgente e frequenza dell’onda prodotta implica che
esiste una frequenza limite:

o fmam
fobs(E) — 'YE‘(E)7

dove fina: rappresenta la massima frequenza associata alla dinamica
classica della sorgente. Per energie prossime a F,, yg — 00 e
fors — 0, indicando che oscillazioni ad altissima frequenza vengono
“congelate” dal meccanismo planckiano.
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7 Verificabilita e testabilita

Polarizzazioni e struttura del gruppo. La struttura di grup-
po rimane isomorfa a SO(1, 3): le due polarizzazioni fondamentali
(+, %) delle onde gravitazionali non vengono alterate. Tuttavia, la
rotazione di Wigner associata alla composizione di boost energetici
suggerisce che sorgenti non collineari ad alta energia possano gene-
rare effetti di mixing tra polarizzazioni, misurabili come rotazioni
anomale del piano di polarizzazione.

Predizioni sperimentali. Le principali conseguenze osservabili
della RRP sulle onde gravitazionali sono:

1. Soppressione delle ampiezze per eventi di energia ultra-
alta (E ~ 1012 GeV);

2. Limite superiore alle frequenze osservabili, con cut-off
dinamico regolato da E/E,;

3. Possibili rotazioni di polarizzazione in eventi multi-
sorgente non collineari, derivanti da effetti di Wigner
planckiani.

Osservazioni future. Gli interferometri gravitazionali di prossi-
ma generazione (LISA, Cosmic Explorer, Einstein Telescope) e le
osservazioni indirette tramite segnali cosmologici (CMB B-modes,
background stocastico) forniranno test cruciali per verificare 'atte-
nuazione planckiana prevista dalla teoria. In particolare, la mancata
osservazione di onde gravitazionali sopra una certa soglia energetica
costituirebbe un chiaro indizio a favore della Relativita Ristretta
Planckiana.

7 Verificabilita e testabilita

7.1 Consistenza teorica

La Relativita Ristretta Planckiana (RRP) introduce una modifica
strutturale alle trasformazioni di Lorentz sostituendo il rapporto
velocistico ¥ con il rapporto energetico E%, dove E, ¢ 'energia
di Planck. La consistenza teorica della formulazione deve essere

verificata su piu livelli: chiusura matematica, recupero dei limiti
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7.1 Consistenza teorica

noti, compatibilita con i principi di causalita e invarianza, assenza
di paradossi cinematici e stabilita delle equazioni di campo.

Invarianza dell’intervallo planckiano.
La RRP si fonda sulla definizione di un intervallo invariante:

sp = (cpt)” — |7,

il quale deve rimanere costante sotto trasformazioni di boost energe-
tico Bg(fg) con parametro g = E/E,. La verifica esplicita segue
dalle proprieta delle matrici di boost:

dove n = diag(1, —1, =1, —1) & la metrica di Minkowski. Ne conse-
gue che lo spazio-tempo planckiano mantiene lo stesso gruppo di
isometrie SO(1,3) della Relativita Ristretta classica, con la sola
differenza che la parametrizzazione avviene in termini energetici
anziché velocistici.

Chiusura del gruppo e rapidita energetica.
Definendo la rapidita energetica ¢g come

tanh ¢ = BE,

si ottiene che le trasformazioni planckiane si compongono
linearmente:

Br(¢2) Be(¢1) = Be(¢1 + ¢2).

Questo dimostra la chiusura del gruppo e 'associativita delle tra-
sformazioni, garantendo che la struttura algebrica e identica a quella

della Relativita Ristretta, con sostituzione ¢ — EEP

Compatibilita con le identita di Bianchi.
Nel regime dinamico, le equazioni di campo modificate assumono
la forma:

G

1
ff ff)
T TRV =5 T,

Gp,l/ + Ag;w = ’Y%
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dove vg = (1 — 5%)_1/ ?. La contrazione delle identita di Bianchi
implica:

VH Gy =0,

da cui segue la conservazione effettiva:
ff
VAT = 0.

Pertanto, la struttura variazionale della teoria & coerente e non
genera violazioni della conservazione del 4-impulso.

Recupero dei limiti noti.
Il limite di bassa energia (E < E,) produce:

w~l = TH~T,,

per cui la teoria si riduce esattamente alla Relativita Generale
classica. Analogamente, nel settore cinematico:

Be—0 = DBgp—1,

recuperando la cinematica newtoniana. Questo garantisce la
compatibilita con i limiti osservativi gia testati.

Causalita e assenza di paradossi.

La condizione |fg| < 1 assicura che E < E,, in perfetta analogia
con |v| < ¢ nella Relativita Ristretta. Questo vincolo impedisce il
superamento dell’energia di Planck e previene la comparsa di inter-
valli temporali chiusi o di paradossi di tipo tachionico. L’invarianza
dell’intervallo planckiano preserva quindi la causalita in tutte le
trasformazioni.

Conclusione.

La RRP & internamente consistente: la sua formulazione con-
serva 'invarianza di gruppo, rispetta la conservazione del tensore
energia—impulso attraverso le identita di Bianchi, recupera i limiti
classici gia verificati sperimentalmente e non introduce violazioni di
causalita. Questa solidita matematica ne giustifica lo studio come
estensione simmetrica della Relativita Ristretta di Einstein verso il
regime planckiano.
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7.1 Consistenza teorica

7.1.1 Limite newtoniano e post-newtoniano (test PPN)

Un criterio essenziale per la consistenza della Relativita Ristretta
Planckiana (RRP) ¢ la capacita di recuperare, nei limiti appropriati,
sia la dinamica newtoniana che le correzioni post—newtoniane, le
quali sono state confermate con estrema precisione in diversi test
sperimentali. In questa sezione sviluppiamo in modo sistematico il
limite a bassa energia e bassa velocita, e analizziamo le correzioni
previste in termini di parametri post—newtoniani (PPN).

Energia e massa efficace.
L’energia totale di una particella in RRP si scrive come

2
H = meg v,c”, Meff = MYVE,

dove v, = (1 —v?/c?)~1/2 ¢ il fattore di Lorentz standard e yg =
(1—(E/E,)?)~Y/2 &l fattore planckiano. La combinazione produce

una massa efficace:
2 4
meﬁ::m(lJr;(g) + (E%) +-~'>,

P

ool

che riduce a m per F < FE,.

Espansione newtoniana.
Per basse velocita (v < ¢) e basse energie (£ < E,), I'energia
si espande come

2 4
H ~ 2 7 — 7 OW°®/ch).
e 2mesr  8migc? + 07/

Il primo termine megc? corrisponde all’energia di riposo modifica-
ta, il secondo all’energia cinetica newtoniana con massa efficace,
mentre i termini successivi forniscono correzioni relativistiche e
post—newtoniane.

Limite newtoniano nelle equazioni di campo.
Le equazioni di campo modificate assumono la forma

817G 1
G + NGy = —2TCD 1D — 7,
c TE
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7 Verificabilita e testabilita

Nell’approssimazione debole, con potenziale gravitazionale ® < ¢,
il campo gravitazionale obbedisce a

P

V2(I) = 47TGpeff, Peff = 5
Ve

Poiché vg ~ 1 per E < E,,, si recupera esattamente 1'’equazione di
Poisson della gravitazione newtoniana.

Sviluppo post—newtoniano.

II formalismo PPN (Parametrized Post—Newtonian) consen-
te di confrontare la teoria con gli esperimenti solari e astrofisici.
Espandendo la metrica attorno a Minkowski,

Guv = M + h;uu ’huu‘ <1,

la RRP produce modifiche nel termine sorgente attraverso peg e
Pefr- In particolare, la metrica statica sferica si scrive

o o2 d
ds® = <1+22+254+--->c2dt2—(1—272+"‘>d9?2,
C C C

dove i parametri PPN ~ e § sono modificati dalla dipendenza da
~vg. Esplicitamente:

2a% 9
7_1:_1+O[%’ ﬁ—lz%()éoﬁ(),
con
1f,(60) 1 E
ap = - , fle) = , €= —.
=5 i) 19T e L,

Compatibilita con i test sperimentali.
I vincoli osservativi piu stringenti provengono da:

o deflessione della luce e ritardo di Shapiro (vincoli su v — 1 <
107°);

o precessione del perielio di Mercurio (vincoli su 8 —1 < 107%);
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7.1 Consistenza teorica

o esperimenti di Lunar Laser Ranging e missioni satellitari come
Cassini.

Affinché la RRP sia compatibile con questi dati, & necessario che
e = FE/E, < 1in tutti i processi astrofisici osservabili, condizione
che risulta ampiamente soddisfatta. Di conseguenza, la teoria recu-
pera i valori PPN standard con correzioni trascurabili nei regimi
attualmente accessibili.

Conclusione.

La RRP risulta verificabile attraverso i test post—newtoniani:
essa recupera la meccanica newtoniana nel limite di bassa energia
e riproduce con grande precisione i parametri PPN osservati. Le
correzioni emergono solo per energie comparabili con E,, regime an-
cora non accessibile sperimentalmente ma potenzialmente rilevante
per cosmologia primordiale e astrofisica ad altissime energie.

7.1.2 Stabilita dinamica e perturbazioni lineari

Un criterio fondamentale per la consistenza della Relativita Ristret-
ta Planckiana (RRP) ¢ la stabilita delle soluzioni dinamiche e la
propagazione delle perturbazioni lineari. In questa sezione analizzia-
mo le condizioni necessarie per garantire che la teoria non presenti
instabilita di tipo ghost o tachionico, e sviluppiamo le equazioni di
perturbazione attorno a soluzioni di background di interesse fisico
(spaziotempo piatto e cosmologia FLRW).

Equazioni di campo e campo planckiano.
Nella formulazione variazionale estesa, l’azione totale comprende
un campo scalare €(z) che regola il fattore planckiano:

1 1 )
— — — < .
YE(€) T f(e) 1—¢€ 0<ex<l1

L’azione del campo planckiano e¢ data da:
so= [d'ev=g [—;gW(vMe)(vye) _ue),

dove k > 0 garantisce una cinetica ben definita e U(e) ¢ un
potenziale regolare con U”(ey) > 0.
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7 Verificabilita e testabilita

Le equazioni di Einstein modificate diventano:

&G

G + Mg = =~ 5 [ng> + f(e)TlST)} ,

con
T;S;E/) =KV, Ve — g (g(VdQ + U(e)) :

Perturbazioni attorno a Minkowski.
Consideriamo il background piatto g,, = 1., e € = ¢ = cost.
Le perturbazioni metriche si scrivono come

G = N + Iy, hw| < 1,
mentre il campo planckiano ¢ perturbato come
€(z) = eg + d¢e(z), |0e| < 1.

L’azione quadraticamente espansa per de é:
@ — [ g |_E L o5y
S = [dx —3 0, (6€) 0" (de) — M (0e)”|,

dove

m?2 =U"(e).

L’equazione delle perturbazioni scalari risulta
Ode +m?2 e =0,

ovvero un’equazione di Klein—Gordon libera, ben posta se k > 0 e
m?2 > 0.

Condizioni di stabilita.

La stabilita lineare richiede:

1. Nessun ghost: k > 0 assicura segno corretto della parte
cinetica.

72



7.1 Consistenza teorica

2. Nessun tachione: m? = U"(eg) > 0.

2

: = 1, garantita da cinetica

3. Velocita delle onde scalari: ¢
canonica.

4. Iperbolicita delle equazioni: 'operatore d’Alembertiano [J
mantiene la causalita delle soluzioni.

Perturbazioni cosmologiche.
In uno sfondo FLRW con metrica

ds® = (14 2®)c%dt? — a(t)?*(1 — 2W)da?,

le perturbazioni di e introducono nuove sorgenti gravitazionali.
L’equazione per de in spazio di Fourier ¢

. . c2k?
de+ 3Hde + (2 + mf) de = S,
a

dove il termine sorgente ¢
Se ~ f'(€0) 0 Ly, + accoppiamenti metrici.

Lo slip gravitazionale ® — ¥ resta nullo a primo ordine per
cinetica canonica, e la relazione di Poisson modificata diventa

E2W ~ 47Ga® [f(eo) dp + f'(e0)pde + dpc] .

Consistenza matematica.

L’analisi mostra che le perturbazioni lineari in RRP rimangono
ben poste e causalmente consistenti, purché il campo e soddisfi le
condizioni di stabilita sopra elencate. In questo quadro:

o Le fluttuazioni di € si propagano come onde scalari massive.

o Le metriche perturbate rispettano la struttura iperbolica delle
equazioni di Einstein modificate.

« La conservazione del 4-momento totale, V“(T,Ef,) + legT)) =0,
¢ assicurata dall’identita di Bianchi.
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Conclusione.

La RRP risulta stabile a livello dinamico e lineare: non emergono
instabilita patologiche, né rotture della causalita. Le perturbazio-
ni cosmologiche introducono correzioni osservabili solo su scale
energetiche prossime a £, mantenendo la compatibilita con i dati
attuali e offrendo predizioni specifiche per scenari di cosmologia
primordiale.

7.1.3 Invarianza di gruppo e assenza di paradossi cinetici

Un aspetto cruciale per la consistenza della Relativita Ristretta
Planckiana (RRP) ¢ la verifica che le trasformazioni di simmetria
preservino la struttura del gruppo di Lorentz modificato e che
non emergano paradossi cinetici. In questa sezione dimostriamo
Iinvarianza dell’intervallo planckiano sotto le trasformazioni di
boost energetici e analizziamo la chiusura algebrica, la composizione
e l'assenza di contraddizioni fisiche analoghe ai paradossi dei sistemi
superluminali.

Invariante planckiano.
L’intervallo planckiano e definito da

sy = (cpt)? — [7]*.
Sotto un boost energetico lungo 'asse x,

' =g (x — Bgegt),

tIZ’YE(t—ﬁEl‘),

CE
dove g = E/E,, con condizione |fg| <1, e
1

VE = —F—x-
A
La verifica diretta mostra che
(cat)? — (@) = (cxt)? —a? = s,
garantendo 'invarianza dell’intervallo planckiano.
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Struttura di gruppo e rapidita energetica.
Introduciamo la rapidita energetica ¢ definita da

tanh(¢g) = SBE, cosh(og) = VE, sinh(¢r) = 7efE-

In questi termini, un boost planckiano si scrive come

_ coshorp —sinho¢p
Blor) = (r —sinh¢g  coshog ) ’

che preserva la metrica n = diag(1, —1).
La legge di composizione dei boost diventa additiva in ¢g:

B(¢g2)B(¢r1) = B(¢p1 + ¢E2),

con chiusura e associativita garantite.

Composizione in piu dimensioni e rotazione di Wigner.

Nel caso tridimensionale, la composizione di due boost planckiani
non collineari genera una rotazione di Wigner Ry, esattamente
come nella Relativita Ristretta classica. Si ha quindi

Bg(fg, ép2) Bp(fy, ¢p1) = Rw(Q, k) Be(hia, dpa2),

dove Dasse k ¢ parallelo a 7i9 X 7i1, e angolo €2 € calcolato tramite
le funzioni iperboliche delle rapidita energetiche. Cio conferma che
la struttura del gruppo & isomorfa a SO*(1,3).

Algebra di Lie.
I generatori dei boost energetici K; e delle rotazioni J; soddisfano
le relazioni di commutazione:

(i, Jj] = €ijidr,  [Jis K] = €u Ky,  [Ki, K] = —€ijid,

le stesse della Relativita Ristretta, mostrando che ’algebra resta
s0(1,3). La sola modifica & nell'interpretazione del parametro di
boost, sostituendo v/c con E/E,.

Assenza di paradossi cinetici.
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Nella Relativita Ristretta classica, i paradossi cinetici (ad esem-
pio il paradosso dei gemelli in formulazioni improprie o la propa-
gazione superluminale) derivano dal tentativo di superare il limite
v > c. Nella RRP, la condizione |Sg| < 1 implica

E < E,,

impedendo la possibilita di superare I’energia di Planck e quindi
eliminando qualsiasi ambiguita interpretativa.
Le proprieta seguenti garantiscono la coerenza:

e Chiusura: la composizione di due trasformazioni & ancora
una trasformazione valida del gruppo di Lorentz planckiano.

 Inverso: per ogni boost B(fg) esiste B(—fg).

« Assenza di super-energia: non esistono trasformazioni che
portino F oltre E,.

o Simmetria speculare: la struttura matematica resta identica
a quella della Relativita Ristretta, con la sostituzione v/c
E/E,.

Conclusione.

[’analisi mostra che la RRP conserva l'invarianza di gruppo
e 'algebra di Lorentz, garantendo che non emergano paradossi
cinetici. Questo rafforza la consistenza della teoria, assicurando che
le trasformazioni planckiane costituiscano un gruppo ben definito,
stabile e compatibile con le simmetrie fondamentali della fisica.

8 Predizioni sperimentali
8.1 Collisioni ultra-energetiche (acceleratori, raggi
cosmici)

Impostiamo cg = ¢ e definiamo il parametro adimensionale ¢ =
Estate/ Ep, con 0 < e < 1. 11 fattore planckiano ¢

1
’VE(E): ma Meff = MYE-
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8.1 Collisioni ultra-energetiche (acceleratori, raggi cosmici)

La relazione di dispersione a livello di particella libera diventa
E? = (pc)* + (meHrCQ)2 =  — —p? = (megc)’.
Per ¢ < 1 si ha 'espansione
e =1+1+ 3"+ O(e9), megzm(1+%52+~--).

Osservabile 1 — Vite medie di stati instabili (test da
decadimenti relativistici in collider). La legge di decadimen-
to si scrive in termini del tempo proprio fisico; usando drpnys =
YE dTgeo = YE dt /7y si ottiene per la vita media osservata:

7
7112513_’7; O—Tlab(l—*g +O(e ))

dove y, = 1/4/1 — 2 ¢ il fattore cinetico ordinario e 7y la vita media
nel riposo proprio. La RRP predice quindi una riduzione frazionaria
~ %52 rispetto alla dilatazione di tempo prevista dalla Relativita
Ristretta. Stime d’ordine di grandezza: a LHC (Epeam ~ 7 TeV per
protone) eppc ~ 7 x 1012 eV /(1.22 x 102 eV) ~ 6 x 10716, dunque
%52 ~ 2 x 1073!; per raggi cosmici ultra-energetici E ~ 10%° eV,

e~8x107% e 3e2 ~ 3 x 10717

Osservabile 2 — Energie di soglia per produzione di stati
massivi. Per un processo a+b— X con b a riposo in laboratorio,
lo scalare di Mandelstam soddisfa s = m ct+ m ct +2mpc’E,. In
RRP, le masse a soglia sono rlmplazzate da m; e = m;yp(e;) per
gli stati finali prodotti. La soglia diventa

RRP 2 4 24
RRP _ RRP _ Sth — MG — MyC
s m; eﬁ‘C E = )
th ) a,th O 2
i€X b

Per ¢; <« 1,

GRRP (Zm) HZE 2+ 0(eh]
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8 Predizioni sperimentali

quindi lo shift frazionario di soglia e dell’ordine ), Zm;n : % 2
j J

A energie di collider e persino per UHECR tale correzione ¢

estremamente piccola.

Osservabile 3 — Bilancio di energia-impulso a livello di
partone. Nel quadro fattorializzato, gli invarianti partonici 8, , @
restano determinati dalle frazioni x5 e da s, ma le masse efficaci
nei canali di produzione 2 — 2 0 2 — n sono meg. Ad esempio, per
qq — (T4~ vicino alla soglia di una risonanza di massa M:

sRRP 2 4 2 4 2
Sth ~ Mige® = M " yp(em)”,

con una traslazione della posizione e dell’ampiezza del picco propor-
zionale a €%;. In pratica, per ) < 1 lo spettro in massa invariante
risulta indistinguibile dal caso standard entro I’attuale risoluzione
sperimentale, ma fornisce un “null test” ad altissima precisione.

Osservabile 4 — Invarianza dell’angolo di Wigner nelle
catene di boost del sistema evento. La composizione di due
boost non collineari introduce la rotazione di Wigner con

o g sinh(%) sinh(%) (2 x )
an— k = :
2 cosh(%4L) cosh(22) + (7 -7az) sinh(%) sinh(%2)

dove tanh ¢; = Bg; e Br,; = E;/E,. In RRP la struttura angolare
resta identica alla Relativita Ristretta (dipende solo da ¢;), ma
I'identificazione ¢; = artanh(E;/E,) permette test consistenziali
confrontando catene cinematiche ricostruite a diverse energie.

Programma di misura (indicativo).

1. In acceleratore: fit multilivello delle vite medie di stati B, D,
7 ed iperoni a energie differenti, cercando una dipendenza
1.2
XX —58 .

2. Near-threshold scans: scansione fine di soglia per canali tt,
W+W =, ZH per vincolare eventuali traslazioni o< €2 in S¢p.

78



8.2 Modifiche al redshift cosmologico

3. In raggi cosmici: estrazione di limiti su € da distribuzioni di
profondita di massimo Xy, € frazioni di muoni nelle docce,
tramite confronti a modello in cui le masse efficaci meg entrano
nei vincoli cinematici dei processi adronici primari.

Ordini di grandezza.
ELHC ~ 107157 €UHECR(1O2O eV) ~8x 1077,

Le correzioni principali scalano come O(g?); la RRP risulta quindi
compatibile con tutti i dati attuali, e richiede misure di precisione
o energie astrofisiche estreme per essere sondabile in laboratorio.

8.2 Modifiche al redshift cosmologico

Definizione operativa del redshift (RRP). Nella RRP la
frequenza misurata da un osservatore ¢ la derivata di fase ri-
spetto al tempo proprio fisico del suo “clock planckiano”, con
ATphys = VE(€) dTgeo, VE(€) = 1/V1 — €2, € = Egtare/ Ep. Dato il
4-momento del fotone k* e la 4-velocita geometrica dell’osservatore
ut = dat [dTgeo, la frequenza fisica misurata e

1 dp 1 dé dreo  —(kut) 1

Vphys =

o ATohys o dTgeo ATphys 2t yp(e)’
Ne segue che il redshift tra emissione (e) e osservazione (o) &

1+ 2rpp = Vphys,e _ (kuu'u)e ’YE(EO)
Uphyso  (Kuut)o VE(€e)

Caso FRW (comoventi). Per un universo omogeneo e isotropo,

. . fep e
con emettitore e osservatore comoventi, vale Ek“z‘& = 2. Allora
o o e

a €
1+ZRRP = £ fYE( O).
Ae 'VE(ee)

Se l'osservatore ha energia di stato trascurabile €, ~ 0 (laboratorio),
risulta
ap 1

I+ zrrp >~ — :
Qe 'YE(Ee)
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Espansione per € < 1. Poiché yg(€) = 1+ €% + 2¢* + O(5),
otteniamo

VE(€o)
VE(€e)

Con ¢, ~ 0 segue la correzione leading

1+zrrp = (142rRW) ~ (1+zrrw) [1 +3(e—e)+ 0(64)] :

1
AZ = 2RRP — ZFRW =~ — B Gz (1 + ZFRW) + 0(64),

ovvero una lieve riduzione del redshift apparente quando la sorgente
ha €, non trascurabile.

Redshift gravitazionale statico (generico). In uno spazio-
tempo statico con metrica ds?> = ggoc?dt? — ..., il redshift totale
tra due radiatori statici e

goo(0) vB(€o)
900(6) ’YE(GE)
1l fattore geometrico riproduce il redshift gravitazionale standard,

mentre il rapporto vg(e,)/vE(€.) implementa la correzione di clock
planckiano.

14+ zgrp =

Drift del redshift. Indichiamo con ¢, il tempo proprio fisico
dell’osservatore locale. La derivata temporale del log-redshift &

d d d d
—_— ln(l + ZRRP) = — 111(1 + ZFRW) + — In ’}/E(Eo) ——1In ’yE(ee).

dt, dt, dt, dt,
Per €, = costante e e, = €.(2), usando - = —Hy(1+2z)-L si ottiene
: : dinvyp(e) | .
Zrrp = ZFRW—(1+2FRW) ’;f() Zrrw,  Zrrw = (14+2)Ho—H(2).
Per e, <« 1,
dIlnvyg de. 3
= €e @ )
dz ‘e dz +0(e)

cosi la correzione ¢ di ordine €, de./dz e diventa potenzialmente
osservabile solo se la sorgente traccia un regime energetico vicino
alla scala di Planck.
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Sintesi. La modifica RRP al redshift ¢ un fattore moltiplicativo
semplice

’YE(EO)
142 = (14 2geo) —=
+ ZrRrpP ( + geo) ’YE(ee)’
dove 1 + zgeo = E:ZZZ;Z cattura gli effetti geometrici (espansione

cosmica e/o potenziali gravitazionali) e il rapporto di vg implementa
la diversa “velocita” dei clock planckiani di emettitore e osservatore.
Nel limite ¢,, €. — 0 si recupera esattamente la formula standard.

8.3 Segnali gravitazionali da collassi stellari estremi

In scenari di collasso gravitazionale (core—collapse di supernove,
formazione di stelle di neutroni ipermassive o buchi neri), la Re-
lativita Ristretta Planckiana (RRP) modifica la generazione del
segnale rispetto alla Relativita Generale (RG) attraverso il “ripeso”
energetico della sorgente. Si introduce il fattore
1
(E) = —————  Tp=~p=1-(E/E),
1—(E/Ey)

e, per campi materiali con energia locale prossima a una frazione non
trascurabile di £, il tensore materia che gravita viene attenuato

come T, éﬁﬁ) = I'gT,,. Nelle stime seguenti assumiamo I'p quasi
costante nella regione emissiva durante I'intervallo temporale del
burst.

Relazione di base (quadrupolo). In RG, il tensore di
polarizzazione lontano dalla sorgente ¢

2G .

TT TT

h; (tvx)ﬁczliD i t—DJc),

dove Q;; ¢ il momento di quadrupolo di massa della sorgente e D
la distanza. In RRP, I'accoppiamento gravitazionale “vede” una

sorgente efficace con masse M;’H = I'gM, e densita ,0‘3ff = I'gp,
quindi

o= /Peﬁ (ﬂfz‘ﬂ?j - %5@'7"2) d*r =TpQij,
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e, a parita di cinematica interna, le seconde derivate temporali si

scalano come QS ~ 'y Qi Ne segue

J
TT ~ TT
hz’j,RRP ~I'g hz‘j,RG :

Lo strain di burst da collasso ¢ quindi ridotto da un fattore I'g
rispetto alla previsione RG con gli stessi profili cinematici.

Frequenze caratteristiche. Le frequenze di picco dei modi di
oscillazione della protostella di neutroni e dell’instabilita dinamica

di barra scalano come
s 1 [GMef
o R3

con M = Ty M e raggio R debole-dipendente dall’equazione di
stato. Trascurando correzioni di R indotte da I'g a primo ordine,

JRRP ~ VTr

fra

Per I'p < 1 si prevede un “red-tilt” del contenuto spettrale, con
spostamento di fpeak verso frequenze pit basse.

Energia irradiata e SNR. La potenza quadrupolare istantanea
in RG e

G o
PRG = 5? <Q13Qm> .
In RRP, usando fo = I'gQ;j, si ottiene a parita di cinematica
Prrp ~ 'L Pre B&W ~T% Egw -

In banda stretta, lo strain spettrale scala come

here(f) = Tp hre (\/JICTE> ;
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ossia ampiezza ridotta e picco spostato a fpeak — VI'E fpeak. Per
uno spettro a singolo picco, il rapporto di segnale-rumore (SNR) si
approssima con

2 |hRRP 2 :
SNRpgp = ¢ [ 000 D 4/ Ff’ ar',

per cui la variazione di SNR dipende sia dall’abbassamento dell’am-
piezza (x I'g) sia dal riposizionamento dello spettro rispetto alla
curva di rumore S,,.

Tempi caratteristici del burst. 1 tempi di crescita delle
instabilita idrodinamiche e magnetorotazionali scalano come

GMef
-1
TNQ y QN T7

quindi

TRRP —1/2
RRE 12
TRG

Il burst risulta piu “largo” nel dominio del tempo per I'p < 1,
coerentemente con lo shift a basse frequenze.

Mappatura su parametri osservativi. L’inferenza bayesiana

in RG ricava massa gravitazionale e raggio a partire da fpeak €

dall’ampiezza. In presenza di RRP, un’analisi RG “ignara” subi-

sce un bias sistematico. Per un indicatore f,e.x calibrato come
peak(M R), la misura reale obbedisce a

fobs = VT [RS8 (M, R)

che verrebbe interpretata in RG come una massa apparente M,
inferiore. Linearizzando,

Af fobs fRG ~

1
f T fre 2
83
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8 Predizioni sperimentali

per (1 —I'g) < 1. Un test nullo consiste nel confrontare la massa
inferita da onde gravitazionali con quella barionica indipendente
da neutrini e fotoni del breakout; una discrepanza coerente con
Af/f =~ —1(1—Tg) segnerebbe un indizio a favore della RRP.

Chirp post-merger di doppie stelle di neutroni. Se il core
collassato rimane temporaneamente sostenuto e produce un segnale
quasi-periodico, la frequenza di deriva df /dt & in RG proporzionale
al trasporto di energia angolare via onde

(ZJ;)RG  f" A(M, R,EOS),

con n dipendente dal meccanismo. In RRP,

da cui una legge di deriva effettiva

dfrrp /2 dfrG
p— E - L .
dt dt
Misure combinate di {fpeak, df /dt, h} permettono di isolare I'g
rompendo degenerazioni con 1’equazione di stato.

Vincoli attesi e sensibilita. Se uno strumento ¢ sensibile a un
errore relativo minimo 0f/f, la piu piccola deviazione rilevabile
dall’ipotesi RG corrisponde a

of
7
Per 0f/f ~ 1072 su un picco fpeax ben misurato, si ottiene un limite

di ordine 1 —T'g 2 2 x 1072. In termini di rapporto energetico
locale e = E/E,,

lp=1-¢> = sg,/Qi{c.

Questo fornisce un criterio operativo per trasformare una misura
spettrale in un limite diretto su ¢ in ambiente di collasso.

1-Tp>2
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Osservabili riassuntivi. Le tre firme principali proposte sono

foeak © frrP/frG =~ VIE,
ampiezza :  hrrp/hrc ~ g,

energia irradiata :  Egny /By ~ T'%,.

La combinazione di questi tre rapporti, misurata evento per evento e
confrontata con simulazioni idrodinamiche relativistiche, costituisce
un test diretto e falsificabile della RRP in regime di collasso stellare
estremo.

9 Falsificabilita

9.1 Condizioni di esclusione empirica

Obiettivo di questa sezione & specificare condizioni quantitative che,
se verificate sperimentalmente, falsificano la RRP nel suo assetto

minimo (cinematica planckiana, clock energetico con vz, materia

“ripesata” da T;Siﬁ) = Tuu/’ﬁ;)-

1) Violazione del bound energetico di Planck. Misura di un
evento fisico localizzato con energia in un sistema inerziale tale che

Eevent > (14 0) By

con incertezza complessiva ben caratterizzata e § > 0 (ad es. § ~
1073) falsifica il Postulato 1 (invarianza e massimalita di E,).

2) Assenza di dipendenza energetica del “clock” oltre i
limiti consentiti. Il postulato 2 implica, per £ < Ej,,

2 4
dTphys 1 1 FE FE
——— =9g(f)= ——/———==1+5|=| +0(=) .

dt 1 (E/EP)Q 2 E, E,
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9 Falsificabilita

Se un esperimento a energia caratteristica F stabilisce il limite

ATphys

dt

— 1’ < €exp

e contemporaneamente vale

1 <E>2 > €
B Ep exps

la RRP e falsificata (poiché predice un effetto minimale superiore
al bound osservativo).

3) Composizione dei “boost energetici” non conforme alla
legge di gruppo. La cinematica RRP richiede, per parametri

ﬁi = Ei/Epv

Bt B

ﬁlQ— 1_1_5152)

Y12 = Y172(1 + 182 cos 6)

(0 & 'angolo tra le direzioni). L’osservazione controllata di una
sequenza di “energizzazioni” che realizzi un [ statisticamente
incompatibile con la relazione sopra falsifica la struttura di gruppo
(e quindi il Postulato 3).

4) Rotazione di Wigner in composizioni non collineari
mancante o con ampiezza sbagliata. Per due boost di rapidita
¢1, @9 e direzioni con prodotto scalare cos 8, 'angolo di Wigner deve
soddisfare

tan(Q> i sinh(¢y/2) sinh(¢9/2) (fig X 1)
2 cosh(¢1/2) cosh(¢a/2) + cos 6 sinh(¢/2) sinh(¢s/2)

Una misura che escluda € (o il suo segno/asse k) previsto a parita
di ¢; e 0 falsifica la cinematica RRP.
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9.1 Condizioni di esclusione empirica

5) Soglie cinematiche e relazioni di dispersione a energia
alta incompatibili con m.s = myg. Nel settore di particella
libera si ha

H? = (pep)* + (me k)’

Qualsiasi fenomenologia di soglia (apertura/chiusura di canali a
due corpi, produzione multi-particella) che richieda una relazione
diversa o che risulti incompatibile con la sostituzione m — myg(E)
entro le incertezze sperimentali falsifica la dinamica RRP minima.

6) Redshift (cosmico o gravitazionale) privo della correzio-
ne planckiana minima. Nel quadro omogeneo-isotropo discusso
in precedenza,

ao (L)
ae YE(Eo)

1+ zrrp =

Se si dimostra sperimentalmente che, a parita di ag/ae, lo scarto

’YE(Ee) . 1‘
ve(Eo)

¢ inferiore a un limite che eccede la predizione minima ~ %[(E2 —

E§)/EZ], la RRP ¢ falsificata.

7) Assenza di saturazione/attenuazione nel settore gravita-

. ff s .
zionale efficace. Con 7, ,E‘Z ) = Ty /7%, osservabili che tracciano

direttamente la “forza” della sorgente (ad esempio masse dina-
miche, parametri di lente gravitazionale in regimi ad altissima
densita/curvatura) devono mostrare la riduzione

1
Seff X 5 -
TE

La misura robusta di Sz che escluda tale attenuazione al livello
atteso per il valore stimato di E falsifica la RRP minimale.
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9 Falsificabilita

8) Consistenza PPN oltre i limiti interni del modello mini-
mo. Nel limite post-newtoniano della formulazione scalare-tensore
minima vale

2 1.2
yppN — 1 =~ —2ag, BppN — 1 > 5300,

con oy = % f'(20)/f(g0). La misurazione di yppN € Sppn incompa-
tibili con qualsiasi scelta regolare di f nel range fisico 0 < e < 1
falsifica la RRP in tale assetto.

9) Coerenza del gruppo di simmetria e assenza di
superluminalitad. La struttura SOT (1, 3) richiede l'invariante

sp = (cut)” — x|,

e la condizione |fg| < 1 assicura £ < Ej,. L’osservazione di trasfor-
mazioni cinematiche equivalenti a |Sg| > 1 o che violino I'invarianza
di s% falsifica la teoria.

Protocollo statistico essenziale per i test di cui sopra. Si
richiede: (i) modellizzazione e sottrazione dei bias sistematici; (ii)
stima bayesiana o frequentista con intervalli credibili/confidenza che
includano la propagazione di incertezze su F, distanza, calibrazioni;
(iii) criteri di esclusione fissati a significativita > 50 (o Bayes factor
decisivo) per dichiarare la falsificazione.

9.2 Confronto con osservazioni gia disponibili (LIGO,
JWST, telescopi gamma)

In questa sezione confrontiamo le previsioni operative della RRP
con tre insiemi di dati gia disponibili: onde gravitazionali (LI-
GO/Virgo/KAGRA), sorgenti ad alto redshift (JWST) e lampi
di raggi gamma/AGN (Fermi-LAT, MAGIC, H.E.S.S.). Il punto-
chiave della RRP, per i test in banda elettromagnetica e gravita-
zionale, € che per campi liberi massless si ha velocita di fase e di
gruppo non dispersiva, v, = ¢ e v, = ¢, e nessun termine di disper-
sione lineare in energia nello spazio piatto: cio implica coerenza (a
livello leading order) con i piu stringenti vincoli di tempo-di-volo e
di dispersione.
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9.2 Confronto con osservazioni gia disponibili (LIGO, JWST, telescopi
gamma)

Onde gravitazionali (LIGO/Virgo/KAGRA). La RRP

non modifica la cinematica dei gravitoni in vuoto: il limite previsto

(&

Vg — C

~ 0 (RRP, vuoto).

C

Il confronto con la controparte osservativa multimessaggero fornisce
il vincolo

Vg —C

S1077,

C

ricavato dalla contemporanea rilevazione dell’onda gravitazionale
GW170817 e del lampo gamma GRB 170817A3. Inoltre, dai dati &

stato posto un limite sulla massa del gravitone compatibile con

h
myc® S107% eV, Ny = —— 210" km,

mgcC

coerente con ’assenza di dispersione per perturbazioni tensoriali
in vuoto prevista dalla RRP*. Eventuali correzioni RRP possono
entrare solo via effetti di yg in regioni di forte campo e alta energia
locale (sorgente), ma non come dispersione di propagazione su
grande distanza.

Sorgenti ad alto redshift (JWST). Le relazioni cinematica-
di-vuoto della RRP si riducono al caso standard per e = E/E, < 1.
Gli spettri e i redshift spettroscopici confermati da JWST fino a z ~
13.2 sono quindi compatibili, a livello puramente cinematico, con il
limite RRP a bassa energia®. In questa sezione non introduciamo
correzioni dinamico-cosmologiche (discusse altrove): qui rileviamo
solo che la definizione osservativa di redshift e la misura di righe di

3B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collabo-
ration), Gravitational Waves and Gamma-rays from a Binary Neutron Star
Merger: GW170817 and GRB 170817A, Phys. Rev. Lett. 119, 161101 (2017),
doi:10.1103/PhysRevLett.119.161101, arXiv:1710.05834.

4R. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), GWTC-
3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second
Part of the Third Observing Run, arXiv:2111.03606 (2021).

SE. Curtis-Lake et al., Spectroscopic confirmation of galazies at redshifts greater
than 10, Nature Astronomy 7, 622-632 (2023), doi:10.1038/s41550-023-01921-1.
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9 Falsificabilita

emissione non richiedono dispersione fotonica in vuoto, in linea con
la RRP.

Telescopi gamma (Fermi-LAT, MAGIC, H.E.S.S.). I
vincoli piu stretti da tempi-di-volo su fotoni di altissima energia
escludono una dispersione lineare in energia del tipo

con scala Mqq inferiore o comparabile a Ey; i dati richiedono
MQGJ Z O(Ep>7

coerente con la previsione RRP v, (E) = ¢ in vuoto (assenza di LIV
lineare). In particolare, I’analisi del GRB 090510 rilevato dal Fermi
GBM/LAT ha imposto che, se esistesse una violazione di Lorentz
lineare, la scala dell’energia quantistica a cui appare dovrebbe
superare la Scala di Planck®. Anche qui, eventuali effetti RRP
entrano nel settore “di sorgente” via yg (clock/massa efficace) e
non come termine di dispersione lungo il cammino.

Sintesi. (i) Cinematica di propagazione: la RRP, per campi
massless in vuoto, ¢ compatibile con i vincoli su v, e 'assenza di
dispersione fotonica/gravitazionale su scale astrofisiche; (ii) Settore
di sorgente: eventuali scarti rispetto a GR standard possono emer-
gere solo in ambienti ad altissima densita/curvatura (ruolo di vg),
da cercare in fasi precoci di coalescenza o in transienti estremi; (iii)
Non sono richieste (né consentite) nella RRP correzioni di tipo LIV
lineare in energia nella propagazione su grande distanza, in accordo
con i limiti attuali.

9.3 Confronto diretto con segnali previsti da DSR,
Gravity’s Rainbow e de Sitter invariant relativity

Obiettivo, ipotesi e notazione Confrontiamo in modo opera-
tivo le previsioni osservabili della Relativita Ristretta Planckiana

6V. Vasileiou et al. (Fermi LAT Collaboration), Constraints on Lorentz Invariance
Violation from Fermi-Large Area Telescope Observations of Gamma-Ray Bursts,
Phys. Rev. D 87, 122001 (2013), doi:10.1103/PhysRevD.87.122001, arXiv:1305.3463.
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9.3 Confronto diretto con segnali previsti da DSR, Gravity’s Rainbow e
de Sitter invariant relativity

(RRP) con tre famiglie di estensioni relativistiche: (i) la Doubly
Special Relativity (DSR), (ii) Gravity’s Rainbow (GRb), e (iii) la
de Sitter Special Relativity (ASSR). Adotteremo le seguenti ipotesi
comuni:

e Per RRP la struttura metrica resta minkowskiana, i boost
sono caratterizzati dal parametro energetico fp = E/E, e dal

fattore vz = (1 — £%)~'/2; poniamo cp = c.

e In DSR le relazioni di dispersione sono debolmente deformate
in potenze di L, (o E; 1), con boost non lineari nello spazio
degli impulsi.

e In GRb la metrica dipende dall’energia tramite funzioni
adimensionali f(E/E,), g(E/E,).

o In dSSR il gruppo di simmetria ¢ SO(4,1), con raggio di
curvatura [2 = 3/A; localmente la velocita limite resta c.

Le grandezze cui confronteremo le teorie sono: velocita di fa-
se/gruppo di campi massless, ritardi di tempo-di-volo su distanze
cosmologiche, soglie cinematiche, redshift, ampiezze/frequenze di
onde gravitazionali da sorgenti estreme.

Cinematica di propagazione dei campi massless: confronto
dei segnali di dispersione

RRP (assenza di dispersione). Proposizione 1. In RRP la
propagazione di campi massless in vuoto ¢ non dispersiva: vpy =
Ugr = ¢, indipendentemente da F.

Dimostrazione. L’intervallo planckiano ¢ s% = (ct)? — |7]2. Per
curve nulle s%, = 0 quindi 2dt? = d#? e v = |d7|/dt = c. 1l fattore
di clock dphys = YE(E) dTgeo non interviene in una condizione di
luce, che ¢ puramente geometrica (nullita dell’intervallo). La fase
¢ = kyat soddisfa k*k, = 0 e quindi w = ck. Dunque vy, = w/k =
ce Vg =0w/0k=c O

DSR (dispersione tipica). Una classe ampia di DSR adotta, a
primo ordine in L,, la relazione deformata

E? — p? —m*ct + L, cp*E + O(LZ) =0,
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9 Falsificabilita

con 1 adimensionale. Per m = 0, risolvendo per E(p) a primo ordine
si ottiene

1 ] (1o 1)
E(p) ~ 1—-=-—F = r=—r~cll—=—F],
() cp{ 2 ¢ Ve dp ¢ 2

che implica ritardi At ~ (1/2) (L,/c) E L su una distanza L. Segnale
distintivo: ritardi lineari (o potenze superiori) in E.

Gravity’s Rainbow (dispersione geometrica). La metri-
ca arcobaleno & ds? = —(dt)?/f? + d#?/g*. Curve nulle danno
|dZ|/dt = ¢(E) = cg/f. Se f # g si ha vpn = vy = ¢(E) # ¢,
determinando ritardi At ~ [(1/c¢(E) — 1/c¢) dL. Segnale: velocita di
luce energia-dipendente fissata da f, g.

dSSR (nessuna dispersione locale). In coordinate stereogra-
fiche g, = Q?(x)n,,. Per curve nulle ds? = 0 = n,, dz"'dz” = 0:
localmente v = c¢. Non emergono ritardi energia-dipendenti; gli ef-
fetti sono geometrici (curvatura, non dispersione). Segnale: assenza
di dispersione per fotoni/gravitoni, come in RRP.

Corollario osservativo. La misura di ritardi energia-dipendenti
x E™ (n > 1) in tempo-di-volo di fotoni o gravitoni esclude RRP
e dSSR e favorisce DSR/GRD; la non-osservazione sistematica
favorisce RRP/dSSR e disfavorisce DSR/GRb con n = 1.

Soglie cinematiche e relazioni di dispersione massi-
vo—massless

RRP (massa efficace ma luce standard). Per stati massivi
in RRP: massa efficace meg = m yp e dispersione

1/2
E2
E? = p? + (megc?)?, Meff = M (1 — ) )

Alle soglie 2 — n con canali massivi, ’energia a soglia subisce uno
shift solo via meg, mentre i campi massless restano coni di luce
standard. Le correzioni sono O((E/E,)?).
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9.3 Confronto diretto con segnali previsti da DSR, Gravity’s Rainbow e
de Sitter invariant relativity

DSR (soglie modificate dal termine di LIV). La correzione
[ ~ Lycp?E altera gli invarianti di Mandelstam a O(L,), produ-
cendo shift di soglia che possono essere O(E/E,) e non puramente
O((E/E,)?). Segnale: deformazioni di soglia lineari (o con potenze
inferiori a 2) non presenti in RRP.

GRb (soglie metriche). La dipendenza (f,g) entra nella defini-
zione locale degli invarianti. Se le stesse funzioni valgono per tutti
i campi, le soglie ereditano la dipendenza energetica geometrica.
Segnale: shift di soglia controllati da f, g, correlati a segnali di
tempo-di-volo.

dSSR (soglie geometriche globali). Le traslazioni standard
sono sostituite da combinazioni con trasformazioni conformi; in
collisioni locali su scale < [ gli effetti di soglia sono soppressi da
potenze di 1/I. Segnale: nessuna anomalia di soglia su scale non
cosmologiche.

Redshift e drift del redshift

RRP. La frequenza misurata dal clock planckiano ¢ vpnys =
—(kyu*)/(2myE). Per sorgenti/osservatori comoventi in FRW:

a €
1t o = %0 78(C0).
Qe 'YE‘(EE)

Con €, ~ 0 si ottiene una lieve riduzione del redshift apparente:
Az ~ —%ez(l + ZFRW)-

DSR e GRb. In DSR, eventuali termini di LIV possono entrare
nella misura di (k,u*) per effetto di dispersione; in GRb, se f # g, la
definizione operativa di tempo coord. e lunghezza scala diversamente
con F, con fattori addizionali < f, g gia nelle geodetiche nulle.
Segnale: correzioni al redshift lineari o comunque non quadratiche
ine.
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9 Falsificabilita

dSSR. I redshift ¢ puramente geometrico: 1 + z = ag/a. (per
comoventi). Nessun fattore energia-dipendente. Segnale: identico al
caso FRW standard.

Onde gravitazionali da collassi estremi: ampiezza,
frequenza e chirp

RRP (attenuazione di sorgente). Nel regime lineare

- 167G 1
Ohy = : T(eff) T;Siﬁ) = g Ty

Al quadrupolo

1y

2
E
htP ~ T hit@ rE57E2:1_<> :

e le frequenze caratteristiche scalano come frrp/frg ~ VI'g. Se-
gnale: combinazione (h, f, Eqw) che verifica h « I'g, f « v/I'g,
EGW x T 2E

DSR e GRb (dispersione di propagazione). Se le onde gra-
vitazionali soddisfano una dispersione modificata (DSR) o una
metrica energia-dipendente (GRDb), allora, oltre (o in luogo) di
effetti di sorgente, emerge dispersione in propagazione:

wf) e v~ [ Mf) —1] d,

con deformagioni di fase accumulate su grandi distanze. Segnale:
decoerenza di fase frequenza-dipendente lungo la propagazione,
assente in RRP.

dSSR (assenza di dispersione e sorgente GR-like). Local-
mente v, = ¢; su scale < [ le sorgenti seguono RG. Segnale: nessuna
dispersione di propagazione; nessuna attenuazione I'p di tipo RRP.
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9.3 Confronto diretto con segnali previsti da DSR, Gravity’s Rainbow e
de Sitter invariant relativity

Teoremi di non-equivalenza operativa

Teorema A (tempo-di-volo). Sia At¢(F) il ritardo fra due
fotoni/gravitoni di energie Ey # Eo emessi co-fase da una stessa
sorgente e rivelati dopo una distanza L. Se At(FE) contiene un
termine o< E™ con n > 1 non sopprimibile geometricamente (A-
indipendente), allora RRP e dSSR sono escluse, mentre DSR/GRb
sono compatibili.

Dimostrazione. In RRP e dSSR vg, = ¢ localmente ed At non
dipende da E (salvo effetti di sorgente non-disperdenti). In DSR
e GRb si ha vg(E) # ¢ per m = 0, producendo inevitabilmente
At(E) o< E™ a primo ordine efficace in L, o nei rapporti f, g. O

Teorema B (triplice discriminante GW). Sia un burst
gravitazionale con (Robs, fpeak,obs: GW,obs). ¢ 1 dati soddisfano
simultaneamente

hobs f k.ob: E
peak,obs GW ,obs 2
P T, P o (T —GW.obs 12
GR fGR EGW,GR

per una I'g € (0,1) indipendente dalla distanza di propagazio-
ne, allora il segnale € compatibile con RRP ed esclude una pura
dispersione di propagazione (tipica DSR/GRb) e dSSR.
Dimostrazione. La scalatura {1, 3,2} in potenza di I'y ¢ una
firma di sorgente nel termine quadrupolare, non riproducibile con
una sola deformazione di propagazione, che agisce principalmente
sulla fase e sul tempo-di-volo, non simultaneamente su ampiezza ed

energia in quel rapporto. In dSSR non compare alcun fattore I' . O

Tavola di discriminanti osservativi (riassunto)

Osservabile RRP DSR GRb dSSR
ToF massless 0 ox B x E via f,g 0

, Soglie o (E/E,)? via meg | o< E/E, tipico f,g-dip. < 1 (curv.)
Redshift xvE(€0)/vE(€e) LIV -dip. 1, g-dip. standard
GW: fase no disp. disp. disp. no disp.
GW: (b, f,Eaw) | o« {Tg,VTg,I'%} no no no

Programma di test incrociato e criteri di esclusione
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9 Falsificabilita

Test 1 (tempo-di-volo multi-messenger). Misurare At(E)
per fotoni e, ove possibile, per componenti in frequenza dei segnali

GW:
E n
Atge(E) = a () L+8,
Ep

con « compatibile con zero = favore a RRP/dSSR; o # 0 = favore
a DSR/GRD.

Test 2 (triplice firma GW di sorgente). Per burst di collasso
o post-merger, verificare

hobs fobs EGW obs
, T2
N ~I'g, ~/I'g, Ei—FE-
GR far GW,GR

Compatibilita statistica = favore a RRP; incompatibilita = favore
a GR standard/DSR/GRb.

Test 3 (soglie cinematiche). Scansioni near-threshold in colli-
der o nei flussi UHECR: presenza di shift o« £/E, = favore a DSR;
assenza (entro limiti) = favore a RRP/dSSR.

Conclusioni comparative

o« RRP prevede nessuna dispersione di propagazione per campi

massless e introduce solo effetti di sorgente via Tﬁﬂr) =Tw/V%,
con firme scalari {I'g, vT'g, %} su (h, f, Egw).

« DSR produce dispersione (tipicamente lineare o a bassa po-
tenza in E/E,) e soglie modificate gia a O(E/E,); segno forte:
ritardi ToF energia-dipendenti.

o Gravity’s Rainbow codifica dispersione geometrica attraver-
so f, g, con segnali analoghi a DSR ma legati a scelte funzionali
metriche; segno forte: ¢(F) = cg/f.

o dSSR mantiene v = ¢ localmente e differisce solo per effetti
geometrici globali o< 1/1; nessuna dispersione o soglie anomale
su scale non cosmologiche.
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9.3 Confronto diretto con segnali previsti da DSR, Gravity’s Rainbow e
de Sitter invariant relativity

In sintesi, tempo-di-volo e triplice firma GW consentono un con-
fronto diretto e falsificabile tra RRP, DSR, GRb e dSSR: la presenza
sistematica di dispersione seleziona DSR/GRD; la sua assenza, unita
a firme di sorgente o I'g, discrimina a favore della RRP rispetto a
dSSR.

8. Discussione e prospettive

In questa sezione mettiamo a confronto sistematico la Relativita
Ristretta Planckiana (RRP) con tre famiglie di estensioni relativisti-
che ampiamente discusse in letteratura — la Relativita a due scale
invarianti (DSR), la Gravity’s Rainbow e la Relativita Speciale de
Sitter (dSSR) — e con il programma di gravita quantistica a loop
(LQG). Lo scopo ¢ chiarire somiglianze strutturali, differenze con-
cettuali e connessioni operative, nonché derivare criteri osservativi
che separino in modo netto le predizioni della RRP da quelle dei
modelli concorrenti.

8.1 Confronto sistematico con DSR, Gravity’s
Rainbow, de Sitter Relativity e Loop Quantum
Gravity

Assiomi di riferimento della RRP. Ricapitoliamo il nucleo as-
siomatico della RRP: esiste una scala energetica invariante £,
e la cinematica conserva l'algebra di Lorentz, con parametro
adimensionale fg = E/E, e fattore

1

’YE:\/Tiﬁg

L’intervallo planckiano

0§5E<1.

sp = (ct)? — || 7]

¢ invariante e la struttura di gruppo ¢ isomorfa a SO(1,3). La
dinamica estesa si realizza sostituendo il tensore materia con

1
T = — T,
S
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preservando le identita di Bianchi e quindi la consistenza variazio-
nale. Per campi massless in vuoto la velocita di fase e di gruppo
coincide con c.

8.1.1 DSR (Doubly Special Relativity) vs RRP

Cinematica e dispersione. In DSR si postula 'invarianza si-
multanea di ¢ e di una scala L, (o E,) deformando le trasformazioni
di Lorentz nello spazio degli impulsi. Una classe ampia di relazioni
di dispersione ¢ del tipo

E? - *p? —m?ct + f(E,p; L,) = 0,
con correzioni, a bassa energia,
f(E,p; Ly) ~ f/pcp2E+ cee

Ne discende, per stati massless, una velocita di gruppo energia-
dipendente

con k dipendente dal modello.

Trasformazioni e “soccer-ball problem”. 1 boost DSR so-
no non lineari e realizzano un’algebra deformata (tipicamente k-
Poincaré). Le leggi di composizione di energia e impulso non sono
univoche e, nella forma piu semplice, inducono il cosiddetto pro-
blema “soccer-ball”: la deformazione microscopica non si riassorbe
automaticamente per stati composti macroscopici.

RRP: teoremi di base in confronto. Teorema 8.1 (in-
varianza e non-dispersione in vuoto). Sia g = E/E,. Le
trasformazioni

_ coshopp —sinh¢p
Mor) = <T —sinh¢p  cosh¢g

98

) ) tanh ¢E = BE7



9.3 Confronto diretto con segnali previsti da DSR, Gravity’s Rainbow e
de Sitter invariant relativity

lasciando invariante s%, implicano per un’onda piana massless
w = ck che la velocita di gruppo in vuoto ¢

ow
=—=c

ok

Dimostrazione. L'invarianza di s%, assicura l'isotropia del cono di
luce w = ck in tutti i sistemi inerziali. Poiché la RRP non deforma
la relazione di dispersione dei campi liberi in vuoto, w(k) resta
lineare. Quindi vy = Ow/0k = c. O

Teorema 8.2 (assenza di “soccer-ball problem” in RRP).
Sia f8; = E;/ E, e si definisca la composizione energetica per sistemi
composti con la legge

Vg

_ B+ B2

L+ 6162
Allora 0 < 19 < 1se 0 < 1,02 < 1, e per N composti 1.y < 1
per induzione.

Dimostrazione. La funzione artanh linearizza la composizione:
definendo ¢; = artanh(/3;), si ha

12 = ¢1 + Po, B2 = tanh(¢12),

e quindi f12 < 1. L’estensione a N segue per induzione additiva
sulla rapidita. (J

Prz

Implicazioni. A differenza della DSR generica, la RRP mantiene
vy = ¢ in vuoto ed evita problemi di composizione per sistemi estesi,
pur introducendo una nuova scala invariante £,. I test di tempo-
di-volo su scale astrofisiche sono quindi nulli a livello leading-order
per la propagazione libera, e i segnali distintivi della RRP risiedono

nella sorgente (T,Seyff)) e nel clock (vg).

8.1.2 Gravity’s Rainbow vs RRP

Metrica “arcobaleno”. In Gravity’s Rainbow si postula una
famiglia di metriche energia-dipendenti

B dt? N dz?
fAE/Ep)  ¢*(E/Ep)’
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con
li =1 li =1.
E/EIIP}?—}O F=1 E/Elg—m g

La velocita dei massless ¢ in generale

_9(E/Ep)
- f(E/Ep)

e puo essere energia-dipendente.

Proposizione 8.3 (condizione di riduzione a RR). Se
c¢(E) = cper ogni £ e E/Ep; < 1, allora f(E) = ¢g(F) in un
intorno di £ = 0.

Dimostrazione. Dalla definizione ¢(E) = %c, la condizione

c(E)

c¢(E) = ¢ implica g(F) = f(F). Per continuita delle funzioni
adimensionali, questa identita vale in un intorno di £ = 0. [J

Proposizione 8.4 (non equivalenza globale con RRP). La
RRP, con metrica universale e v, = ¢ in vuoto, ¢ globalmente non
equivalente a Gravity’s Rainbow salvo il caso banale f = g = 1.

Dimostrazione. In RRP l'intervallo s2, & universale e non dipende
da E. Se esistesse un’uguaglianza con una metrica arcobaleno non
banale, si avrebbe una E-dipendenza dello spazio-tempo percepito
dai campi liberi, in contraddizione con la non-dispersione in vuoto
(Teorema 8.1). L’unico caso compatibile ¢ f =g =1.0

Dinamica ed osservabili. Rainbow introduce anche G(E) e
A(E), mentre la RRP mantiene G e A costanti e “ripesa” le
sorgenti con 1/4%. In cosmologia, Rainbow sposta l'orizzonte
tramite c(E), mentre la RRP regolarizza i termini materia con
peft = /7%, ammettendo un bounce senza introdurre dispersione
in propagazione.

8.1.3 de Sitter Special Relativity (dSSR) vs RRP

Gruppo e costante universale. La dSSR sostituisce Poincaré
con SO(4,1) e introduce una lunghezza | = 1/3/A come costante
universale. La metrica stereografica ¢

1

Juv = 0*(x) yme Qz) = m-
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Il limite A — 0 (I — o0) recupera Minkowski.

Proposizione 8.5 (commutativita dei limiti deboli). Nel
dominio congiunto E/E, < 1 e 0?/1*> < 1, i limiti E/E, — 0
(RRP—RR) e A — 0 (dSSR—RR) commutano all’ordine piu basso:

lim lim = lim lim .
A—0 E/E,—0 E/E,—0 A—0

Dimostrazione. Entrambe le estensioni riducono le correzioni a
termini quadratici piccoli (5% per RRP, 02 /12 per dSSR). All’'ordine
pit basso, le perturbazioni si sommano linearmente e i due limiti
eliminano indipendentemente i rispettivi correttivi, restituendo la

RR. O

Differenze operative. La dSSR & una deformazione geometrica
controllata da A (scala cosmologica), la RRP & una estensione
energetica controllata da E, (scala ultravioletta). La prima ha
firme soprattutto su scale cosmologiche, la seconda su processi ad
altissima energia e in forti campi. Le due estensioni sono logicamente
ortogonali e potenzialmente componibili in un’analisi a doppia scala

(A E,).

8.1.4 Loop Quantum Gravity (LQG) vs RRP

Natura della teoria. La LQG ¢ una quantizzazione canonica
background-independent della gravita con variabili di Ashtekar,
stati di rete di spin e dinamica a vincoli (Gauss, diffeomorfismi
spaziali, Hamiltoniano). La RRP & una estensione classica della
relativita con una scala energetica invariante e una dinamica efficace

£
Tﬁ )= TW/%%J-

Confronto di equazioni efficaci in cosmologia. LQC (ridu-
zione omogenea-isotropa di LQG) suggerisce equazioni efficaci del
tipo
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con p. vicino alla densita di Planck. La RRP propone

_81G p kc?

Ac? 1
3 4% a?

In entrambi i casi l'effetto netto ad alta energia & una saturazione
del contributo gravitante della materia, che evita la singolarita
(amin > 0), sebbene 'origine sia diversa: p-correzioni quantistiche
in LQC, ripeso energetico universale in RRP.

H2

Osservazioni. La LQG ¢ una proposta di quantizzazione della
gravita con propri osservabili (spettri discreti di area e volume),
mentre la RRP € una estensione classica minimalmente invasiva.
Le due prospettive sono complementari: i vincoli osservativi che
selezionano vg in RRP possono fornire condizioni al contorno per
efficaci semiclassici in LQG/LQC; viceversa, analisi di LQG sul
regime di Planck possono motivare dipendenze yg(FE) pitt micro-
fondate.

8.1.5 Tabella di confronto sintetico

Caratteristica RRP DSR Rainbow dSSR
Costante nuova E, Ly (0 Ep) Ep;in f,g A
(I=+/3/A)
Gruppo SO(1,3) intatto k-Poincaré dipendente da F S50(4,1)
(deformato)
 Dispersione massless (vuo-| w = ck w(k) deformata o(E) = Ep w=ck
to) !

Origine effetti YE, T‘(Lf,ﬁ) boost non lineari metrica g, (F) curvatura costante
Bounce cosmico P/ modello c(E), G(E), A(E) curvatura A
dipendente
Problemi noti — soccer-ball, non-localita, osservabilita

ambiguita princ. d’equivalenza debole

8.1.6 Prospettive sperimentali discriminatorie

Propagazione libera massless.

AtTOF ~(
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mentre molte realizzazioni DSR/Rainbow implicano Atpop o
(E/E,) L/c oppure « (E/E,)* L/c. Misure null su At favoriscono
la RRP e la dSSR rispetto a schemi con ¢(E) # c.

Settore di sorgente. La RRP modifica ampiezze e frequenze
alla sorgente tramite

T _
T;Eiff) = %7 fpeak =V FE fpeaka FE = ’7E27
E

mentre DSR/Rainbow tipicamente predicono segnali in propa-
gazione. La combinazione (fpeak, 7, Egw) in transienti compatti
permette di isolare I'g.

Cinematica delle soglie. In RRP le soglie sono influenzate da
masse efficaci

Meff = MYE,
con correzioni O((E/E,)?) ultra-piccole a energie di laborato-
rio, mentre in DSR le leggi di conservazione possono risultare
debolmente modificate gia a primo ordine in L,,.

8.1.7 Conclusioni del confronto

La RRP emerge come estensione speculare della Relativita Ristretta:
conserva il gruppo SO(1, 3), postula una scala energetica invariante
E, e sposta le firme fisiche dai fenomeni di propagazione (spesso
esclusi sperimentalmente) a quelli di sorgente e di clock. DSR e
Gravity’s Rainbow esplorano deformazioni cinematiche e metriche
che, pur eleganti algebricamente, incontrano tensioni empiriche e
concettuali (dispersione lineare/quadratica, principio di equivalenza,
non-localita). La dSSR introduce la costante A su basi geometriche,
con effetti su scale cosmologiche; la LQG fornisce un quadro quanti-
stico background-independent, potenzialmente complementare alla
RRP sul piano efficace.

In prospettiva, una fenomenologia a doppia scala (E,, A) che
combini RRP e dSSR, insieme a vincoli da transienti compatti e
cosmologia di precisione, rappresenta il banco di prova piu pro-
mettente per discriminare in modo definitivo fra queste estensioni
relativistiche.
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8.2 Implicazioni concettuali della dualita c <
Ly

Questa sezione chiarisce il significato logico della sostituzione strut-
turale che porta dalla Relativita Ristretta standard, fondata sull’in-
varianza della velocita della luce, alla Relativita Ristretta Planc-
kiana, in cui il ruolo di quantita invariante ¢ assunto da una scala
energetica universale. La tesi e che esiste un dizionario matematico
coerente che mappa le affermazioni cinematiche della relativita
einsteiniana nel dominio delle energie attraverso la corrispondenza
B=v/c<— Bg = E/E, e y < g, mantenendo invariati grup-
po, causalita e struttura di spazio—tempo per i campi massless e
spostando gli effetti nuovi nel settore dei clock e delle sorgenti.

Dizionario di dualita. II parallelismo & governato dalle due
quantita adimensionali 8 = 7 e fp = Eﬁp, con fattori di Lorentz v =

1 _ 1 ) P . .
Sim e Vg = T Le trasformazioni planckiane si ottengono
dalla forma canonica di Lorentz mediante la sostituzione 5 — (g e
producono la stessa legge di composizione in rapidita ¢ = artanh 3,
¢p = artanh g, ossia ¢12 = @1 + @2 € Pp12 = 1 + Pp2. 1l cono
di luce resta definito da s* = (ct)? — ||Z||* e per curve nulle la
relazione w = ¢k rimane valida, con velocita di fase e di gruppo
Uph = Ugr = C.

Proposizione 1 (isomorfismo cinematica—energia). Sia
A(¢p) € SO™(1,3) una trasformazione di boost con rapidita ¢. La
mappa @ : ¢ — ¢p definita da tanh ¢ = ¢ e tanh ¢p = Eﬁp realizza

un isomorfismo di gruppo tra il sottogruppo dei boost standard e il
sottogruppo “energetico” generato da ¢ g: si ha A(p2)A(d1) = A(p1+
¢2) e, in modo speculare, Bg(¢g2)Be(¢p1) = Be(¢p1 + ¢p2).

Dimostrazione. Segue dall’additivita delle rapidita e dall’identita
tanh(a + ) = tanha @ tanh 8 con @ la legge frazioni-lineare
(xdy) = ffwyy Poiché tanh & biettiva su (—1,1), la corrispondenza
& un isomorfismo. [J

Corollario (bound e chiusura). La condizione |3| < 1 implica

v < oo; la condizione |fg| < 1 implica v < oo. La legge di
S1+82 BeatBee  Ng
1+B182 14+8E,1BE,2"

composizione (15 = ha il gemello g 12 =
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segue la stabilita del bound |v| < ¢ e, specularmente, |E| < E,
sotto composizione.

Proposizione 2 (invarianza dell’intervallo e non-
dispersione massless). Nel settore dei campi privi di massa la con-
dizione di nullita s> = 0 implica w = ck. La dualita non altera tale
relazione perché agisce sui parametri di boost tramite 5 — Sg sen-
za modificare la metrica piatta 7, = diag(1, -1, -1, —1). Quindi
vph:%:cevgr:g—z:c.

Dimostrazione. Dalla definizione di curva nulla e dalla linearita
della dispersione in vuoto segue immediatamente I'uguaglianza delle
due velocita alla costante ¢. O

Clock planckiano e dualita delle dilatazioni temporali. Nel

dominio standard la dilatazione temporale ¢ d7 = %. Nel dominio

energetico la dinamica introduce un “clock” fisico dmpnys = Y£ d7geo
con d7ge, = %. La simmetria concettuale ¢: la velocita limita la
v

crescita di v, U'energia limita la crescita di vg; nel limite 8 — 1~
il tempo di coordinate si dilata rispetto al proprio, mentre nel
limite S — 17 il tempo proprio fisico si “accelera” rispetto a
quello geometrico. In entrambi i casi la quantita invariante (c¢
oppure Ep) emerge come costante che satura il rispettivo parametro
adimensionale.

Principio di corrispondenza e recupero di basse energie.
Il dizionario ¢ <« Eﬁp rispetta il principio di corrispondenza: per

. 2 2
lv| < csihay~1+1%, %%S
In particolare, per € = E/E, piccolo, tutte le quantita cinemati-
che e dinamiche della teoria planckiana si riducono alle rispettive

espressioni relativistiche classiche con correzioni quadratiche in e.

mentre per |E| < Ej si hayp ~ 1+

Causalita, gruppi e assenza di paradossi cinetici. Poiché
I'algebra di Lie resta so(1,3) con generatori J; e K; che soddisfano
[Ji,Jj] = eiijk, [Ji,Kj} = fiijk; [Ki,Kj] = —Eiijk, I'assetto
di causalita e il cono di luce non sono intaccati dalla dualita;
cio assicura 'assenza di paradossi cinetici nella composizione di
trasformazioni non collineari, dove compare la rotazione di Wigner
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con la consueta struttura SO(3). La dualita agisce sui parametri di
boost senza alterare né I'invariante s2 né la chiusura del gruppo.

Energia invariante come costante “universale” complemen-
tare. L’introduzione di E, come costante universale complemen-
tare a ¢ realizza una forma di complementarita UV/IR: ¢ regola i
rapporti spaziali-temporali e il limite sulle velocita, £, regola la
“velocita” dei processi di clock e un limite superiore sull’energia di
stato che entra nei fattori di scala dinamici. Questa duplicita pre-
serva la struttura minkowskiana per la propagazione libera e sposta
i nuovi effetti in quantita direttamente collegate alla misura del
tempo proprio e alla risposta delle sorgenti, mantenendo invariati i
test di propagazione a grande distanza per campi massless.

Conclusione. La dualita ¢ <+ E, fornisce un principio organiz-
zatore semplice e potente: tutte le costruzioni cinematiche della

relativita ristretta si riproducono sostituendo £ con Eﬁ a livello

di parametri di boost e fattori di Lorentz, mentre Pinvariante geo-
metrico, il gruppo di simmetria e la propagazione dei campi senza
massa restano identici al caso einsteiniano. Le differenze fisicamente
rilevanti emergono nei clock e nelle sorgenti attraverso g, rispet-
tando corrispondenza, causalita e chiusura di gruppo, e delineando
un quadro concettuale privo di paradossi e direttamente agganciato
a osservabili operativi.

8.3 Collegamento con la Relativita Generale
Planckiana

Scopo di questo paragrafo (solo accennato qui) ¢ mostrare il dizio-
nario concettuale e matematico che collega la Relativita Ristretta
Planckiana (RRP), formulata su spazio-tempo piatto con intervallo
planckiano invariante, alla sua estensione geometrica in spazio-
tempo curvo, la Relativita Generale Planckiana (RGP). L’idea-
chiave e promuovere la dipendenza energetica globale della RRP,
codificata in yg(€) con € = E/E,, a un campo (o parametro) €(z)
localmente definito su una varieta lorentziana (M, g), preservando
I'invarianza locale di Lorentz e le identita di Bianchi.
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Dizionario RRP — RGP (schema minimale).

+ Metrica di Minkowski ), — metrica dinamica g, (z).
« Parametro costante € = E/E, — profilo locale e(x) € [0, 1).

« Fattore di clock yg(e) — ripesatura universale della materia

tramite f(e) = yg(e) 2.

o Invarianza dell’intervallo planckiano s% = (ct)? — ||Z||* —

propagazione [ocale su coni di luce di g,, con campi massless
non dispersi (a livello cinematico): w = ck.

Tempo proprio e tetrodi. Il fattore di clock della RRP
generalizza a spazio-tempo curvo come

1
dTphyS = ’VE(E(x)) dTgeo» dTgeo = ggu,,(x) daPda” .

Equivalentemente, in una base tetradica e®,(z) (con g. =
Nab e“uebl,) la misura fisica dei tempi ¢ riscalata da ~yg, mentre
la cinematica dei campi massless resta ancorata al cono nullo di
guv (quindi nessuna dispersione di vuoto € introdotta dalla sola
sostituzione di clock).

Azione efficace e sorgenti. Una realizzazione minimale
del collegamento € ottenuta sostituendo, nel settore materia,

SElg.vid = [ d'e =g fe@) Lalg. V). SO =re(0 = 1=
e mantenendo l'azione gravitazionale di Einstein—Hilbert. La

variazione rispetto a ¢g"” produce un tensore energia—impulso
efficace

1D = f(e(@)) T

cosl che le equazioni di campo planckiane, nella forma pit semplice
(con € trattato come dato esterno), sono

87G (o 8rG 1
G+ Mgy = = T = = g T

Se € = const., si recupera direttamente la prescrizione RRP T‘S,ejﬁ) =
TW/ ’7%-
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Identita di Bianchi e consistenza locale. Poiché V*G),, = 0,
segue

VMT;E,IE/H) =0 = V“TW = — T,uy V“lnf(E) )

ossia uno scambio locale di quattro-momento tra settore materia e
settore planckiano (se e = e(x) varia), coerente con il principio di
conservazione totale. Nel caso € = const. si ha V#T),, = 0.

Proposizione (limite di compatibilita RRP — RGP). Sia
una soluzione inerziale RRP su 7,, con |fg| < 1, B = E/E,, e
sia € = const.. Allora la soluzione RGP corrispondente ¢ ottenuta
sostituendo 7, = gu € Ty TW/%%;7 lasciando invariata la
propagazione di campi massless in vuoto e riscalando le grandezze
temporali misurate da drpnys = Ve dTgeo-

Dimostrazione (schizzo). La sostituzione di cui sopra soddisfa le

equazioni di campo con sorgente efficace e rispetta V#T, ﬁﬂr) =0. La
nullita dell’intervallo per campi massless si conserva, quindi w = ck
localmente. [

Osservazioni operative (rinvio a lavoro dedicato).

 In cosmologia omogenea—isotropa, scegliendo € = ¢(t) 0 € =
const., le equazioni efficaci si riducono a una ripesatura p —
p/7v% e p > p/y%, con conseguente attenuazione del contributo
gravitante della materia ad alte energie.

¢ In geometrie stazionarie e sferiche, la massa attiva efficace
scala come Meg = M/~%, lasciando inalterata la struttura di
vuoto esterna ma modificando i parametri caratteristici alla
sorgente.

e Una formulazione completamente covariante pud promuove-
re € a campo scalare con cinetica e potenziale, mantenendo
I'invarianza di Lorentz locale e la ben—posta variazionale.

Sintesi. La RGP eredita dalla RRP la dualita tra clock (vg) e
sorgente (Tﬁﬁ)), collocandola in un quadro geometrico pienamente
covariante: i campi massless propagano localmente su (M, g) senza

dispersione di vuoto, mentre gli effetti planckiani emergono nel
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settore della materia/curvatura tramite la ripesatura universale
Ty = T/ 7% (o, in formulazioni equivalenti, tramite una metrica
effettiva nel settore temporale). Le deduzioni complete (equazioni
variazionali, stabilita e test) sono sviluppate nell’articolo dedicato
alla Relativita Generale Planckiana.

8.4 Aperture verso una unificazione con la
meccanica quantistica

Obiettivo e criteri. Una formulazione quantistica compatibile
con la Relativita Ristretta Planckiana (RRP) deve: (i) preservare
la causalita locale (coni di luce invarianti), (ii) mantenere 1'unita-
rieta (positivita del generatore temporale) e (iii) ridursi alla teoria
quantistica standard nel limite e = E/E,, — 0. In RRP l'invariante
¢ l'intervallo planckiano s%, = (ct)? — ||7]|? e la struttura di gruppo
resta isomorfa a SO(1, 3); gli effetti planckiani entrano attraverso
il clock energetico via il fattore yg(e) = (1 — €2)7'/2, senza defor-
mare i coni nulli. Questo consente una quantizzazione che conserva
microcausalita e analiticita di scattering, spostando le novita nel
settore di sorgente/clock.

(A) Dalla Hamilton—Jacobi planckiana alla meccanica
quantistica a una particella. Nel quadro RRP la funzione azione
S(z) per una particella libera soddisfa

1
= (08)" = [VS|* = (meg ¢)®, g = mym(e),

con m massa a riposo e meg massa efficace di clock. L’elevazione
canonica p, +— P, = ih0, produce 'equazione di Klein-Gordon
planckiana

2 2
|
<D+m%§c>¢_o, 0= 50— V2,

mentre per fermioni si ottiene 1’equazione di Dirac

(ithy"0,, — megc) i = 0.
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La relazione di dispersione resta w? = c2k? + (megc?/h)? e, per
stati massless, w = ck (nessuna dispersione). Nel limite ¢ — 0 segue
Mef — M € si recuperano le equazioni standard.

(B) Azione di worldline e integrale
di Feynman. L’azione di particella in RRP

S1E0)] = —me [l 1 - Lol

definisce il propagatore come somma sui cammini

K(xg, ;) = /Dw exp{;S[m}}.

Se g € costante nel settore considerato (stati stazionari), il kernel
coincide con quello standard a massa meg. Se yg = vg(x) varia
lentamente, un’espansione WKB ordina le correzioni in Vg senza
alterare i coni nulli, preservando microcausalita.

dt = —mc / ATphys, dTphys = VE dTgeo,

(C) Teoria dei campi libera e interazioni minime. Per un
campo scalare reale ¢ e un campo di Dirac 1) su spazio piatto:

£ = 10,00"0 — L (29?62, L8 = (im0, — masc) .

L’accoppiamento elettromagnetico minimale 9, — D, = 0, + %A,
resta inalterato; le identita di Ward-Takahashi seguono come in
QED perché la corrente di Noether ¢ invariata (il cono di luce non
cambia). Il tensore energia—impulso canonico ¢ quello standard con
m — meg. Microcausalita: [¢(x), ¢(y)] = 0 per separazione spaceli-
ke poiché il propagatore di Pauli-Jordan dipende solo dall’invariante
(z —y)*.

(D) Scattering, analiticita e LSZ. Il teorema LSZ si applica
immutato: gli stati asintotici sono definiti sulle shell p? = m2gc?. Le
funzioni di Green hanno la stessa struttura analitica di polo/taglio,
con i poli fisici traslati in meg. L’assenza di dispersione per campi
massless garantisce che la regione di Jost e i domini di microcausalita
coincidano con quelli standard; 'unitarieta della matrice S segue
dalla conservazione della corrente di probabilita.

(E) Promozione quantistica del vg: campo planckiano.
Una via sistematica alla dinamica quantistica del clock e introdurre
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9.3 Confronto diretto con segnali previsti da DSR, Gravity’s Rainbow e
de Sitter invariant relativity
—1/2

un campo scalare g(z) € [0, 1) con yg(e) = (1—¢?) e lagrangiana

canonica

L. =5 0,e0" —Ule),

accoppiato alla  materia tramite un peso f(e) =
ve(e)2 = 1 — €2 A livello efficace piatto,

A _
Ling = — 5 g2 @2 (scalari) oppure Ling = —Ae24yp  (fermioni),

riproduce m2; ~ m?[1 + (e?) + ---]. Stabilita richiede k > 0 e
U"(eg) > 0; Passenza di ghost e tachioni garantisce ben—posto e
unitarieta. Nel limite € — 0 la teoria torna esattamente standard.

(F) Principio di indeterminazione e “clock” planckia-
no. Poiché i coni nulli non sono deformati, le commutazioni
[#%, p;] = ihd'; restano intatte. La risoluzione temporale misurata
da un clock planckiano ¢ drphys = Vi dTgeo; Per processi controllati

sperimentalmente il bound operativo assume la forma

h
ATphys AE Z b <7E>7
mostrando che a parita di AE un clock piu “veloce” (yg > 1)
degrada la risoluzione in 7,y in modo controllato ma non introduce
non-linearita nella struttura di Hilbert.

(G) Rinormalizzabilita ed effettivita. A energie e < 1 la so-
stituzione m — meg non altera il conteggio di potenze: QED/QCD
restano rinormalizzabili. A energie prossime a £, la descrizione
e effettiva: 'espansione in € produce operatori locali soppressi da
potenze di £ 1 con coefficiente controllato da Vg quando il clock
varia spazialmente. L’unitarieta parziale-onda ¢ preservata finché
vE < oo (le] < 1).

(H) Sintesi operativa.

 Propagazione: nessuna dispersione per campi massless (w =
ck); microcausalita e coni di luce invarianti.

o Spettri: per campi massivi, shift m — meg = myp induce
correzioni a livelli legati O(€?).

o Scattering: LSZ e analiticita invariate; poli a p? = mZzc?.
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9 Falsificabilita

o Clock quantistico: un campo ¢(x) implementa dinamicamente
v mantenendo stabilita (k > 0, U” > 0) e conservazione di
corrente.

Queste aperture forniscono un ponte coerente fra la struttura cineti-
ca della RRP e la meccanica quantistica/QFT standard: la causalita
e lunitarieta sono preservate, mentre gli effetti planckiani emergono
come riscalamenti di clock/massa e, se resi dinamici, come una
debole nuova interazione scalare universalmente accoppiata. Nel
limite € — 0 ogni costruzione qui esposta si riduce senza ambiguita
alla teoria quantistica convenzionale.
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Appendici

A Calcoli variazionali dettagliati

Convenzioni. Firma metrica (4, —, —, —), connessione di Levi-
Civita V,,, d’Alembertiano J = ¢*¥V,V,,. Poniamo cg = ¢ salvo di-
versa indicazione. La costante di Planck energetica ¢ E, = \/hc®/G.
Introduciamo un campo scalare adimensionale locale e(x) € [0,1) e
il fattore planckiano

1 1

=1-¢.

’}/E(E) mv f(€> '}/E(E)Q -

11 settore materia classico & descritto da una lagrangiana Ly,(g, )
(dipendenza implicita dai campi 1)).

A.1 Azione totale e termini al bordo

Si consideri 'azione
Slg,e, 0] = Sy + Sc + S 4+ Sany,
dove

3

167G

Sy = /d4x\/—gR, Scny = dy |h| K,

817G Jom
Se = /d4x\/jg {—;g“”(vue)(vye) — U(e)} ) k>0,

S0 = [t V=g 50 Lu(g.v).

Il termine di Gibbons—-Hawking—York Sguy rende ben posto il
problema variazionale con frontiera a metrica fissata.
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A Calcoli variazionali dettagliati

A.2 Identita variazionali di base

Per una variazione arbitraria dg*” valgono

V=9 =—5V=99uw 9", SR =(Ru + g —V,V,)og"

Per il campo scalare
J [(V6)2:| =2(V"€)(V”€) dg — 2 (Oe) de + divergenza.
A.3 Variazione rispetto alla metrica e tensori
energia—impulso

Variare S rispetto a ¢ (con de = 0 = 1)) e usare Sguy per
cancellare i termini di bordo che provengono da d R. Si ottiene

3
C 1 (6)

mGMV: 2 uu+ f()T;Srun7
ossia
87G 1 (e m
G =~ TS + () T,
Qui
T = 7\/% 5:w ( / d'z /=g L) T = k(Vue) (Vi) = g E(VE)MU(G)]

Poiché f(e) € uno scalare indipendente da g,,, la sua presenza in

glefh) produce solo il prefattore f(e) davanti a 7, ;Sfjn)

A.4 Variazione rispetto a epsilon: equazione di
campo e sorgente di materia

La variazione di S rispetto a € (a metrica e ¢ fissati) fornisce

0S. = /d4w V=g [— K Oe — U’(e)]ée, 58Lef) — /d4;L' V=9 f'(€) L de,

da cui

kOe — U'(e) + f(€) Ly = 0

con f'(€) = —2e. Questa equazione mostra I’accoppiamento non
minimale tra e e la lagrangiana di materia.
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A.5 Conservazione totale e corrente di scambio

A.5 Conservazione totale e corrente di scambio

La diffeomorfismo-invarianza, assieme alle identita di Bianchi
VkG,,, = 0, implica

VAT + fe) T = 0.
Usando 'equazione di € si trova

VAT = [k0e — U'(€)] Ve = — f'(€) Lin Ve,

VHAO TEY) = f(e) VAT + f'(e) (Ve) TS5,

Se il settore materia ¢ minimamente accoppiato (quindi V“Tlggl) =0
in assenza di accoppiamenti aggiuntivi), allora

VAT = —Qu, VT =+Qu,  Qu=f(€) L Vue,

ossia lo scambio di 4-impulso tra € e materia & controllato da @Q,.
La conservazione totale ¢ sempre soddisfatta.

A.6 Limite epsilon costante e forma T,ﬁgff)

Se € = ¢y € costante, Ve = 0 e Ue = 0; 'equazione per € si riduce
al vincolo algebrico

—U/(Eo) + fI(E()) Lm =0.

Il tensore del campo scalare diventa T,Ef,) = —U(€o) guv, che si
riassorbe in una costante cosmologica efficace Aeg = A + 824GU (€0)-
Le equazioni di campo assumono la forma

81G
Gy + Aett g =~ | f () T .

Scrivendo f(€y) = ve(€o) 2 si identifica

1
left) T,
T )

o o ff o
cioe la sostituzione T, — TSZ ) usata nel corpo principale.
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A Calcoli variazionali dettagliati

A.7 Forma hamiltoniana e densita di energia efficace
(sketch)

In un 3 + 1-split ADM con metrica spaziale h;;, lapse NV e shift N ‘
la densita hamiltoniana totale (ignorando vincoli secondari) legge
schematicamente

H = Har[hij, 7] + Hele, 7] + N f(€) pm + N* f(€) i,

dove pp e ji® sono, rispettivamente, densita di energia e corrente
di materia. Ne segue che, al livello dei vincoli, la sorgente efficace &
ridotta di f(e) = 1 — €2

A.8 Linearizzazione: equazioni di Friedmann modifi-
cate

Per background FLRW, ds? = c*dt*—a(t)? di?, e = €(t) omogeneo, e
fluido perfetto di materia (p, p), dalle equazioni di campo precedenti

si ricavano (per k e U trascurabili a livello di background, o assorbiti
in Aeff)

N ke Agc?
Hz:<a>:8WG p_ ke Aac”
a 3 ye(e)? a? 3
i 4rnG p+3p/c? N Aerc?
3 ye(e)? 3

in accordo con le formule usate nella sezione cosmologica
dell’articolo.

A.9 Settore particellare in spaziotempo curvo:
principio d’azione

Per una particella di massa m su worldline z#(\), con 4-velocita
ut = dz#/d), la versione minimale coerente con il clock planckiano
e

Spp = _mc2/d)\ Ve(€(x)) \/ G () uF 0,
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A.10 Espansioni perturbative per epsilon piccolo

da cui
oL G’

Pu=gon = TMVE
ut / ay, B
GapU~— W

La variazione rispetto a x* fornisce equazioni geodetiche forzate da
gradienti di vg:

utugy
u2

u'Vyut = — <(5“U — ) VInyg(e),

che si riducono alle geodetiche di Levi-Civita quando Vyg = 0.

A.10 Espansioni perturbative per epsilon piccolo

Per € < 1 si hanno
ve(€) =145+ 31+ O(),  fl=1-¢
Al primo ordine non banale,

81G [

G + Netrgr =~ [T} + T3 = € TRV + O,

Hv

da cui I'attenuazione efficace della sorgente o €2.

A.11 Osservazioni su ben-posto, stabilita e PPN
(cenni tecnici)

Per Kk > 0 e U"(¢ep) > 0, le perturbazioni scalari de hanno
lagrangiana quadratica canonica

1
Lo = —g (906)” — Sm2(6e)’,  m2=U"(eo) -+,

senza ghost né tachioni. In regime post-newtoniano, definen-

do A(e) = /f(e), i parametri PPN effettivi sono (a grandi distanze)
2a} L 9 _dlnA _ da

TTrag Brpn — 1 = 5050, an = —- . Bo= dc .,

fornendo condizioni dirette per i test solari (Jag|> << 1075, ecc.).

yppN — 1 =
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B Algebra dei generatori e struttura di simmetria

Sintesi. L’apparato variazionale qui derivato mostra che: (i) le
equazioni di Einstein si modificano con una sorgente totale Tff) +
f(e)T,ngl); (i) I'equazione del campo € & k0e — U’ (€) + f'(€) L = 0;
(iii) la conservazione totale ¢ garantita e il trasferimento di 4-
momento ¢ @, = f'(€)L, V€ (iv) nel limite € = const. si recupera
la forma efficace T;Sf,ﬁ) = Tﬁ(fyn) /7% usata nel testo principale, con
una Acg eventualmente corretta da Ulep).

B Algebra dei generatori e struttura di

simmetria
Convenzioni e obiettivo. L’inter-
vallo planckiano (cinematica 3+1) e

52E = (CEL‘)2 - Hch2 N = diag(l,—1, -1, —1), X* = (cpt, x),

ed ¢ preservato da trasformazioni lineari reali A tali che
ATnA =n.

Il gruppo connesso all’identita di tutte tali trasformazioni & isomor-
fo al gruppo di Lorentz proprio e ortocrono SO™(1,3). In questa
Appendice costruiamo rigorosamente la sua algebra di Lie, i gene-
ratori infinitesimi (rotazioni J e boost energetici K), i Casimir,
le decomposizioni su(2) & su(2), la rappresentazione SL(2,C) e la
classificazione dei little groups. Tutte le identita sono indipendenti
dalla specifica interpretazione planckiana del parametro di boost
Br = E/E, (con |Bg| < 1) e coincidono strutturalmente con la
cinematica lorentziana standard.

Algebra infinitesima da ATn A = 7. Sia A(e) = W+e G+O(£?)
una curva di gruppo con A(0) = W¥. La condizione di invarianza
implica, a primo ordine in ¢,

KE+e@)"nE+eG)=n = nG+G'n=0.

Gli operatori G che soddisfano nG + G5 = 0 formano I'algebra di
Lie so(1, 3). Introduciamo i generatori anti-simmetrici M, = —M,,,
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come base canonica:

(M,ut/)pa = Nuo 5/01/ — TNvo 5,1)#.

Un generico elemento G si espande come G = %

—w"H,

Wt M, con wh” =

Commutatori generali e riduzione a J,K. Dalla
rappresentazione precedente segue il commutatore di Lorentz

[M;u/a Mpo] = nprua - nule/a - nuUMup + nuaMl/p-
Definiamo i generatori fisici

Ji = %Eijk Mjka Kz = MOia iaj7k1 € {17 273}7
dove €5 ¢ il simbolo di Levi-Civita con €123 = +1. I commutatori
si riducono a

[Ji, Jj] = €k, [Ji, K| = €iju K, [Ki, K| = —€ijiJk

Questa ¢ precisamente I’algebra so(1,3), con J che chiude in so(3)
e K che trasforma come vettore sotto rotazioni.

Rappresentazione esplicita 4 x 4. Nel sistema di coordinate
(0,1,2,3) = (t,z,y, z) si possono scegliere

00 0 0 000 0 00 00
00 0 0 000 —1 00 10
)y = (), = Ty = ﬂ
1) o0 o0 1| "000 o0 (Js) "0 —1 0 o’
00 -1 0 010 0 00 00
0100 0010 0001
1000 0000 0000
K, = pr e (K= .
(K1) "o 00 of "10 0 o 000 0
0000 0000 1000

E immediato verificare che n.J; + J, n =0e nK; + K/n=0, ¢
che i commutatori sopra sono soddisfatti.

Esponenziale di gruppo e trasformazioni finite. Per un
angolo 6 e un versore N,

R(n,0) = exp(0n-J), Bg(n, ¢p) = exp(¢pn-K),
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B Algebra dei generatori e struttura di simmetria

dove la rapiditda energetica ¢ & definita da

FE .
tanh¢op = B = —, cosh¢p = g, sinh o = Vg BE.

By
La legge di composizione dei boost segue dal lemma di Ba-
ker—Campbell-Hausdorff (BCH). Per boost non collineari, il termine
[K;, K] o< —J) genera una rotazione finita (rotazione di Wigner),
coerente con la cinematica sviluppata nel testo principale.
Decomposizione su(2) @ su(2). Definiamo i combinatori
complessi

A= (J+iK), B=_(J-iK)

N —

Si verifica
[A;, Aj] = €A, |Bi, Bj| = €iji B, [A;, B;] =0,

ossia 60(1, 3)c = su(2) ®su(2). Le rappresentazioni irriducibili della
componente connessa SO (1,3) sono etichettate da coppie (ji,7-)
di spin semi-interi.

Casimir dell’algebra. Con M* = pran’h M, i due invarianti
di Lie (commutano con tutti i generatori) sono

1

01:2

1
M, ,M" =J* - K?*  Cy= 1 o MIMMP7 = J K.

La prova che [Cy, Mas] = 0 (a = 1,2) segue dall'identita di Jacobi
e dalla completa anti-simmetria di €0

Rappresentazione di copertura SL(2,C). Associare a un
4-vettore X* la matrice hermitiana X = X*o, (09 = ¥, o; di
Pauli). Ogni A € SO*(1,3) & indotta da un S € SL(2,C) tramite

Xr— X' =85X8T, det X' = det X = 1, X' X" = s%,.
Rotazioni e boost corrispondono a

Sr(f,0) = exp( - éeﬁ-a), Sp(h, dp) = exp( + %¢>E na)
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La moltiplicazione 5557 riproduce via identita di Pauli la decom-
posizione boost+rotazione e fornisce, in forma chiusa, I’angolo di
Wigner (visto nel corpo del testo).

Little  groups (classificazione orbits).  Dato
un 4-vettore p*, il little group W(p) C  SOT(1,3)
¢ lisotropo di p: Ap = p. Si trovano tre classi:
(i) timelike (p* > 0) : W(p)=SO(3), (i) lightlike (p*> = 0) : W(p)=FE(2), (iii) spacelike (p* < 0) : W (p)=SO(2,1).

Questa classificazione governa le rappresentazioni unitarie in-
dotte (teoria di Wigner) e non dipende dalla parametrizzazione
planckiana del boost.

Legame con i boost energetici della RRP. La RRP
parametrizza i sottogruppi di boost tramite

E

=5 |BE| < 1, ¢p = artanh(0g), ~vE = cosh ¢,
P

senza alterare 'algebra di generatore: la struttura di simmetria
resta s0(1,3). In particolare:

Bg(n, ¢g) = exp(ppn-K), R(n,0)=exp(@n-J),

Bg(ns, ¢p2) Be(i, ¢p1) = Rw Be(fis, ¢p12),

con Ry rotazione di Wigner determinata univocamente dai com-
mutatori [K;, Kj] o« Ji. La chiusura di gruppo, I’associativita e
la stabilita del bound |fg| < 1 discendono dalla linearizzazione
additiva in rapidita ¢g.

Riassunto operativo.

1. 1 generatori M, definiti da nG + G'"n = 0 realizzano so(1, 3).

2. La base fisica {J, K} soddisfa [J;, J;] = €judp, [Ji, Kj] =
€ij K, [Ki, Kj] = —e€ijiJi.

3. I Casimir sono Oy = J? — K? e Cy = J- K.

4. La decomposizione complessa fornisce su(2) @ su(2) con
generatori A, B.

5. La copertura SL(2,C) agisce per congruenza X > SXST,
preservando s2.
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C Soluzioni esatte in cosmologia e astrofisica

6. La parametrizzazione planckiana entra solo nella scelta della
rapidita ¢ = artanh(E/E}): la struttura di simmetria resta
quella di Lorentz.

C Soluzioni esatte in cosmologia e astrofisi-
ca

C.1 Cosmologia FLRW con 7y costante: soluzioni
esatte a equazione di stato costante

Consideriamo uno spaziotempo omogeneo e isotropo con metrica
FLRW (firma 4+ ———) e materia come fluido perfetto con equazione
di stato p = w pc?, con w costante. Nel quadro RRP con ripeso
energetico costante vg > 1 si ha

AN 2 2
a 8rG ke Ac
H25(> Sl A p+3H<p+§>—0.

a 3 v a? 3
La  continuita  implica  p(a) = po (ag/a)3+w).
Per &k = 0 e A = 0  otteniamo
s 3(1+w) ) oG 3(1—2‘,-11))
— ™ a a __ ] — T
H=\[3Fm(Q) 2 o= atmm @=nzma’
a 2
Separando le variabili,
(+w) £ 3
3(14+w 3(1+w
a2 da=adt = at)=a (t) ;
*

con ay,t, costanti d’integrazione. Dunque l’evoluzione di po-
tenza ¢ identica alla RG classica, ma i tempi caratteristici so-
no dilatati dal fattore yg attraverso a o 1/vg. In particolare:

polvere (w = 0) : a(t)oxt??, radiazione (w = ) a(t)oct!/?,
Con A > 0 ek =0, a bassa densita domina la soluzione de Sitter

Ac?
a(t) o< exp Tt ,
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C.2 Modello di bounce esatto con legame €*(a) = p(a)/pp

mentre con k # 0 si ottengono le usuali soluzioni trigonome-
triche/iperboliche sostituendo p — p/7% in tutte le costanti
caratteristiche.

Osservazione. Per yg = costante, I'intera dinamica FLRW ¢ for-
malmente equivalente alla RG con densita efficace pog = p/v%; gli
esponenti di legge di potenza non cambiano, ma le scale temporali
sono ricalibrate.

C.2 Modello di bounce esatto con legame ¢*(a) =
p(a)/pp

Introduciamo la realizzazione variazionale opzionale in cui il
rapporto planckiano locale €(x) soddisfa il vincolo algebrico

2
2 Estate P 2 1 1
€ = = YE = 2 = )
Ep Pp l—e 1—p/pp

con pp una densita di scala planckiana. La prima di Friedmann
modificata diventa

HQZ%p 1_£ _k702+A702
3 Pp a? 3

Ponendo k = A = 0 e p = wpc? (con w costante), la continuita
p o< a=304®W) ¢ Pequazione per H ammettono la soluzione esatta di

bounce
1
t 2| 3(1+w)
o) = —"2y alt)=ap 1+(tB)] ,
1 _
+<tB>
con
1 1

ap = costante (minimo non nullo di a).

t =
BT orGpy 1+w’

Il punto di bounce (H = 0) avviene a p = p, e 'evoluzione ¢ re-
golare per ogni t € R. Per w = 0 e w = 1 si ottengono esplicitamente

w=0: a(t):aB[1+(é)2]1/3’ w:3 | a<t):aB{1+(t;)2rM
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C Soluzioni esatte in cosmologia e astrofisica

Commento. 11 bounce € qui una conseguenza dell’identificazione
€2 = p/pp, che rende vg divergente a densita planckiane e attenua
la sorgente gravitazionale p/v% = p(1 — p/pp).

C.3 Soluzioni statiche sferiche: esterno ed interni
con densita costante

C.3.1 Esterno (vuoto) con massa efficace.

Nel vuoto T, ;Ef,ﬁr) = 0; quindi le soluzioni di Einstein in vuoto coin-
cidono con quelle standard, con i parametri di sorgente ripesati
quando si raccordano a un interno materiale. Per una sorgente
isolata di massa inerziale M la massa gravitante efficace all’esterno
e

M
Meg = 9
TE
e la metrica esterna e Schwarzschild—(A)dS:
2GMg  Ar? 2GMy A2\
ds? =(1— GMer _ Ar” Adt* — 1 - GMer _ Ar” dr? — r?dQ?.
cAr 3 cAr 3

Il raggio gravitazionale efficace ¢ i) — 2G Mg/ =15 /7%,.

C.3.2 Interno di Schwarzschild (fluido incomprimibile).

Assumiamo un interno sferico di raggio R e densita p = costante.
Nel quadro RRP con vg = costante nella regione sorgente, la densita
e la pressione efficaci sono

P D

Peff = 57 DPeff = —5 -

TE TE

La soluzione interna a densita costante ¢ allora identica alla
soluzione classica con p — pegr. Ponendo

47 “\(r
m(r) = ?pdf 3, e M) =1 2,
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C.4 Onde gravitazionali in vuoto: soluzioni pp-wave

il potenziale temporale e*(") &

2
1 2G M, 2Gm(r)
v = = g1 =ty 2T
‘ 4 \/ 2R \/ cr ’

e la pressione radiale (TOV) risulta

A
3\/1 _ 2(0;21%1;f \/1 _ 2Gm(r '

Il raggio di Buchdahl si trasforma in

2GMe 8 2GM 8

<= e < A2
2R 9 2R 97E

mostrando che, a parita di M e R, l'effetto planckiano tende ad
allentare il vincolo di compattazione tramite Mg < M.

peﬂ = Peff c

C.3.3 Soluzione radiativa di Vaidya (massa variabile).

Per un flusso radiale nullo (accrezione/evaporazione) la

metrica di Vaidya in coordinate avanzate v si scrive

2G M, M
ds®> = <1 - 23(0)) Adv® + 2cdv dr — r?dQ?, Meg(v) = <2U)
c2r E

La componente di stress—energia nulla che sostiene la soluzione

scala come TioD = (1/47r?) 4t coerentemente con il ripeso
1/

C.4 Onde gravitazionali in vuoto: soluzioni pp-wave

Poiché in vuoto le equazioni restano R, = 0, ogni soluzione esatta
pp-wave della RG ¢ soluzione anche in RRP. In coordinate di
Brinkmann

ds? = 2dudv + H(u,x,y) du® + da® + dy?, 8§H+8§H:

fornisce un’onda piana esatta. La non-dispersione in vuoto (vpn =
vgr = ) € garantita dall’assenza di termini di materia efficaci lungo
la propagazione.
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C Soluzioni esatte in cosmologia e astrofisica

C.5 Geodetiche radiali e lensing per il campo esterno
efficace

Nel campo esterno statico e sferico (Schwarzschild—(A)dS con Meg)
le equazioni geodetiche per particelle test sono identiche alle forme
standard con sostituzione M — M. In particolare, per fotoni
(ds? = 0) 'angolo di deflessione a primo ordine &

AGMyz 4G M

& o~ = — —
b c2b y2’

dove b ¢ il parametro d’impatto. Per particelle massive (Ey, L
costanti del moto) il potenziale efficace

QGMeff A7”2 L2
Ver(r) = (1‘ ‘3> (*

mostra lo spostamento dei raggi orbitali stabili/instabili in funzione
di Meg.

C.6 Riepilogo operativo

o Cosmologia, vg = costante: soluzioni FLRW identiche alla for-
ma RG con p — p/7%; esponenti invariati, tempi caratteristici
ricalibrati.

o Bounce esatto: con € = p/p, si ottiene a(t) = ap[l +

(t/tm)?] /205 e p(t) = pp/[1 + (t/t5)?).

o Astrofisica statica: esterni di Schwarzschild-(A)dS con Mg =
M /~%; interni incomprimibili e TOV si ottengono sostituendo
p— /7B » = P/VE-

e Onde in vuoto: le pp-wave restano soluzioni esatte; nessuna
dispersione di propagazione.

o Osservabili: deflessioni, raggi ISCO ed epoche caratteristiche
dipendono da M.g; la cinematica di luce e GW in vuoto resta
indistinguibile da RG (leading order), mentre le differenze
emergono alla sorgente o in regimi ad alta e.
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